Abstract:
PROBLEM TO BE SOLVED: To provide a correction method of a fluorescence sensor 10 having high detection accuracy.SOLUTION: In the correction method of the fluorescence sensor in an embodiment, the fluorescence sensor 10 is used which includes: an LED element 12 which generates excitation light E; an indicator layer 16 which generates fluorescence F; and a PD element 13 which outputs a detection signal obtained by superimposing an excitation light detection signal caused by the excitation light E on a fluorescence detection signal caused by the fluorescence F, and which has a temperature detection function and a temperature adjusting function. This correction method includes: a first detection signal acquiring step of acquiring a first detection signal at a first temperature; a second detection signal acquiring step of acquiring, at a second temperature, a second detection signal when the amount of analyte is the same as that in the first detection signal acquiring step; a correction coefficient calculation step of calculating a correction coefficient for calculating a fluorescence detection signal based on the first detection signal and the second detection signal; and a correction step of correcting the detection signal after that, using the correction coefficient and the temperature detection signal.
Abstract:
A temperature measurement system configured to measure a temperature of a target object having a first main surface and a second main surface includes a light source unit configured to emit output light penetrating the target object and including a first wavelength range and a second wavelength range; a measurement unit configured to measure a spectrum of reflected light; an optical path length ratio calculator configured to calculate an optical path length ratio between the output light of the first wavelength range and the output light of the second wavelength range; and a temperature calculator configured to calculate the temperature of the target object based on the optical path length ratio and a previously investigated relationship between the temperature of the target object and a refractive index ratio between the output light of the first wavelength range and the output light of the second wavelength range.
Abstract:
Provided is a concentration measurement apparatus for measuring a concentration of a measurement object using an infrared ray, the concentration measurement apparatus including a signal acquisition unit configured to acquire a detection signal, a temperature information acquisition unit configured to acquire temperature information, a correction unit configured to output a correction signal obtained by correcting a temperature dependency of the detection signal based on the temperature information, and a calculation unit configured to calculate the concentration of the measurement object according to the correction signal using calibration curve data at a predetermined reference temperature for calculating the concentration of the measurement object, in which the correction unit is configured to output the correction signal obtained by performing linear correction of the detection signal using, among predetermined correction parameters different for three or more respective temperature segments, the correction parameter in a temperature segment corresponding to the temperature information.
Abstract:
A concentration measurement device for measuring the concentration of a measured fluid within a measurement cell by detecting transmitted light that has passed through the measurement cell having a light incidence window and a light emission window disposed opposing to each other, comprising a reflected-light detector for detecting reflected light of the light incidence window.
Abstract:
An oxygen sensing system comprises a substrate structured to communicate optical signals. An oxygen sensing layer is disposed on the substrate and comprises an oxygen sensing molecule in a matrix in a first unexcited state and formulated to: (a) be excited by a first optical signal to move to a second state; (b) be quenched in the second state by oxygen; and (c) emit a second optical signal corresponding to an amount of oxygen. A protective layer, disposed on the oxygen sensing layer, includes at least one of i) an oleophobic layer and ii) an anti-fouling layer. A controller is optically coupled to the substrate and structured to generate the first optical signal, receive the second optical signal and determine oxygen concentration from the second optical signal.
Abstract:
The present application describes an optical sensor for measuring oxygen gas levels in a medium. The optical sensor includes a substrate having a first and second surface. The optical sensor also includes a first coating applied on the first surface of the substrate. The first coating may include an oxygen impermeable matrix doped with a first fluorophore. The optical sensor may include a second coating applied on the substrate. The present application also describes a capnography system for measuring oxygen including an optical sensor and an algorithm to estimate the maxima of oxygen levels from instantaneous oxygen levels and calculating instantaneous carbon dioxide levels from the difference between average maximum oxygen gas level and instantaneous oxygen gas level.
Abstract:
Apparatus, systems, methods, and related computer program products for handling temperature variation with optoelectronic components of a hazard detection system are described herein. A power characteristic of an optoelectronic component of the hazard detection system may be used to determine a temperature of an environment of the hazard detection system. A power characteristic of an optoelectronic component of the hazard detection system may be used to determine a smoke condition of an environment of the hazard detection system. Optoelectronic components of the hazard detection system may be optically coupled to determine a smoke condition of an environment of the hazard detection system. Multiple optoelectronics of the hazard detection system may be operative to detect forward scatter and back scatter of one or more types of light to determine a characteristic of a hazard particle.