Abstract:
The invention relates to a thermochromic device comprising -a light transmitting substrate; -at least one infrared absorbingmaterial comprising nanoparticles; -at least one thermochromic material. By absorbinginfrared energy, the presence of the infrared absorbing material increases the temperature of the substrate so that the transition temperature of the thermochromic material is reached faster.
Abstract:
본 출원은, 광변조 장치 및 광변조 장치의 용도에 대한 것이다. 본 출원의 광변조 장치는 가시광선 영역에서 높은 투과율을 가지고 적외선 영역에서 낮은 투과율을 가지며 낮은 면저항 값을 가지는 복합층에 의하여 외부 신호를 인가할 수 있다. 이러한 광변조 장치는 스마트 윈도우, 윈도우 보호막, 플렉서블 디스플레이 소자, 3D 영상 표시용 액티브 리타더(active retarder) 또는 시야각 조절 필름 등과 같은 다양한 용도에 적용될 수 있다.
Abstract:
A diffuser is provided in an illumination system, where the diffuser is capable of blocking significant amounts of infrared (IR) and/or ultraviolet (UV) radiation. In certain example embodiments of this invention, the diffuser includes a glass substrate which supports an IR/UV coating(s) that blocks significant amounts of IR and/or UV radiation thereby reducing the amount of IR and/or UV radiation which can makes its way through the diffuser. In certain example embodiments, the coating may include particulate in a frit matrix so that the coating may both diffuse visible light and perform IR and/or UV blocking.
Abstract:
Provided is a composition comprising a nonmicellar twisted nematic liquid crystal having cholesteric near infrared-reflecting properties and at least one near infrared absorptive material. This composition reduces the transmission of near infrared radiation. The composition can be used as a layer, optionally in conjunction with polymeric films, polymeric sheets, rigid sheets, and the like, to form multilayer laminates. In some embodiments these multilayer laminates are useful as solar control windows or window films to reduce energy consumption necessary to cool the interior of a structure such as an automobile or building.
Abstract:
Methods of and apparatuses for reducing the solar or infrared loading on display devices. A reflective material (39) is positioned between a radiant energy source (5) and the absorptive material (410) of a display device (400) to reflect wavelengths of radiant energy in the infrared or near-infrared range. The reflective material (30) allows visible radiant energy (60) to be transmitted, while reflecting the infrared radiant energy to reduce the infrared loading on the display device. The present invention reduces the temperature rise of the display device due to infrared loading by reflection rather than absorption of the radiant energy, while preserving the integrity of the visible wavelength range. The reflective material (30) reduces the infrared loading on the display device by up to 50 %.
Abstract:
A light-absorbing, neutral density filter for an electronic device display having a capacity grid layer. More specifically, a light-absorbing, neutral density filter applied as a protective film or protective layer to an electronic device display or incorporated into or onto the screen layers of a device that can block ultraviolet light, high energy visible light, a portion of blue light, and/or other light in the visible spectrum. The neutral density filter comprises a polymer substrate and an absorbing agent.
Abstract:
The present invention provides a solar reflective-absorptive device, comprising: an IR reflective transparent conductive film; a flexible transparent conductive film; a layer of liquid crystal dispersion in polymer matrix or polymer dispersion in liquid crystal domains allocated between said flexible IR reflective transparent conductive film and said flexible transparent conductive film. The liquid crystal dispersion is in polymer matrix or polymer dispersion domains, and comprises metalorganic dye compositions with absorption in the visible and/or IR regions of solar spectrum. The aforesaid liquid crystal dispersion consists of nematic mixtures and/or cholestenc mixtures comprising of chiral mesogenic or none-mesogenic chiral materials in nematic for IR absorption and/or broadband cholesteric materials for dynamic (electrically tunable) IR and visible absorption. The switching capability of the device will be carried out through reorientation of the liquid crystal dispersion sandwiched between said at least one transparent IR-reflective flexible conductive support and said transparent flexible conductive support.
Abstract:
Provided are a light modulation device and a use thereof. The light modulation device may apply an external signal by a composite layer having a high transmittance in a visible region, a low transmittance in an infrared region and a low sheet resistance. Such a light modulation device may be applied in various uses such as a smart window, a window protecting film, a flexible display element, an active retarder for displaying a 3D image or a viewing angle control film.