Abstract:
A method of monitoring a split wind-turbine-converter system with at least one generator-side converter and at least one grid-side converter arranged at distant locations, and a DC-link in the form of an elongated conductor arrangement with at least one positive and at least one negative conductor. The impedance of the DC-link conductor arrangement is determined by means of DC-voltage sensors. The voltages between the positive and the negative conductors are determined at the generator-side converter and at the grid-side converter, and the difference between the voltages is determined. The impedance of the DC-link conductor arrangement is determined by putting the determined voltage difference in relation to the DC current flowing through the DC-link conductor arrangement. If the impedance exceeds a given impedance threshold a fault state is recognized.
Abstract:
The invention presents a control arrangement of an electric motor (2) used with a frequency converter (1 ) as well as a method for controlling an electric motor used with a frequency converter. In the invention the frequency converter is fitted between the power source (3) and the electric motor (2). A rectifier (5, 18) that transmits the braking power of the motor is fitted to the intermediate circuit (8, 9) of the frequency converter. In the method according to the invention the intermediate circuit voltage (21) is regulated with a control (11) of the braking power according to the reference value (12) of intermediate circuit voltage.
Abstract:
Systems and methods for synchronous operation of variable speed drives having active converters include extending the synchronous operation of an active converter to the AC mains voltage during complete line dropout. A phase angle control circuit includes a squaring amplifier, a first phase-lock loop circuit associated and a second phase-lock loop circuit. The squaring amplifier receives the AC power source and outputs a rectangular output signal to a pair of phase lock loop (PLL) circuits. The first PLL circuit with a first lag-lead filter is configured with a high cutoff frequency to provide the converter stage with a phase angle parameter; and the second phase-lock loop circuit including a second lag-lead filter configured to have a low cutoff frequency to provide the lag-lead filter the capability of storing the phase angle of the mains voltage during mains interruption.
Abstract:
Systems and methods for operating a variable speed drive to receive an input AC power at a fixed AC input voltage and frequency and provide an output AC power at a variable voltage and variable frequency. The variable speed drive includes a converter stage to convert the input AC voltage to a boosted DC voltage, a DC link connected to the converter stage to filter and store the boosted DC voltage from the converter stage; and an inverter stage to convert the boosted DC voltage into AC power with variable voltage and the variable frequency. An integral bypass contactor is connected in parallel with the VSD between the AC power source and the AC output power. The integral bypass contactor is arranged to bypass the VSD when the VSD output frequency and voltage are approximately equal with the AC input voltage and frequency.
Abstract:
A plastic liquid cooled variable speed drive or inductor provided. The cooler provides lightweight, space conservative, corrosive free cooling to the components as well as provides a mounting area for modules. A cooler can be mounted to the core of an inductor to absorb heat generated by the core losses.
Abstract:
Systems and methods for improved Variable Speed Drives having active inverters include an input filter for filtering common mode and differential mode currents. A three-phase inductor has three windings, each winding of the three-phase inductor having a center tap dividing each winding into a pair of inductor sections; and a three-phase input capacitor bank connected in a wye configuration to the three center taps at one end, and to a common point at the opposite end. The three-phase input capacitor bank provides a short circuit for frequencies above a predetermined fundamental frequency for shunting such frequencies through the three phase capacitor bank, while passing the predetermined fundamental frequency to an input AC power source.
Abstract:
A motor drive device includes: a converter that converts AC power supplied from an AC power source into DC power and outputs the DC power to a DC link; a capacitor installed in the DC link; an inverter that converts the DC power at the DC link into AC power for driving a motor and outputs the AC power; a charging circuit that has a charging resistor for preventing inrush current during the period of pre-charging of the capacitor; a charging control unit that controls the pre-charging of the capacitor executed by the charging circuit; and an abnormality determination unit that determines, during the period of pre-charging of the capacitor, whether an abnormality has occurred, on the basis of a measurement value of the voltage of the capacitor and/or a measurement value of the current flowing through the DC link.
Abstract:
A system has a DC bus circuit with first and second terminals, an intermediate node, first and second capacitors, first and second depletion mode FETs, and first and second switching control circuits, where the first depletion mode FET has a drain coupled to the first bus terminal, a source, and a gate coupled to the intermediate node, the second depletion mode FET has a drain coupled to the intermediate node, a source, and a gate coupled to the second bus terminal, the first switching control circuit turns the first depletion mode FET off responsive to a first capacitor voltage of the first bus capacitor being less than or equal to a second capacitor voltage of the second bus capacitor, and the second switching control circuit turns the second depletion mode FET off responsive to the first capacitor voltage being greater than or equal to the second capacitor voltage.
Abstract:
A power control device includes a power receiving unit, a power converting unit, and a control device. The power receiving unit includes a secondary coil that receives AC electric power transmitted from a power transmitting device in a non-contact manner. The power converting unit includes transistors with two phases as a pair connected to the secondary coil. The power converting unit converts the AC electric power received by the power receiving unit to DC electric power. The control device performs a synchronous rectification operation of rectifying the AC electric power by synchronously driving the transistors in two phases when a target output is equal to or greater than a target output. The control device controls the synchronous rectification operation and a short-circuiting operation of short-circuiting the secondary coil using the transistors in two phases through pulse frequency modulation when the target output is less than the predetermined value.