Abstract:
A phase detector of a phase-lock-loop circuit measures a phase error between an output signal of an oscillator and a synchronizing signal. When a difference between the phase error that is measured in a pair of horizontal line periods exceeds a first magnitude, that is indicative of phase error inconsistency, the phase of the oscillator output signal is not corrected and the phase-lock-loop circuit operates in an idle mode of operation.
Abstract:
A voltage controlled ring oscillator whose frequency does not depend on the number of stages in the ring oscillator. The inventive voltage controlled ring oscillator comprises N inverters connected in series with the output of the Nth inverter being coupled into the input of the first inverter. The output of each inverter is connected to a transconductance amplifier. The outputs of all transconductance amplifiers are summed. The oscillation period of the circuit is 2t.sub.d, (where t.sub.d is the delay of one inverter) which is independent of the number of inverters in the ring oscillator.
Abstract:
An electrically controlled oscillator circuit having multi-phase outputs with programmable frequency. The circuit includes a ring oscillator having a plurality of inverting stages. Each stage has an output which is connected to a switch that can be programmed to select one of a plurality of capacitors with different values to change the frequency range of the oscillator. Controlled current is fed to the stages to vary the frequency of the oscillator within a selected frequency range. Using capacitors to change the frequency range of the oscillator reduces variations of the oscillator output frequency.
Abstract:
An embodiment of the present invention is a voltage controlled oscillator (VCO) comprised of a differential pair of transistors that have respective positive feedback paths with phase-lead networks cross-coupled. Each positive feedback path on each side has two different phase-lead branches. The two phase-lead branches have the same phase differences on each side of the differential pair, in order to maintain a symmetry that improves common-mode noise rejection on a voltage control differential input. Current-steering is used to control the mixture of currents that arrive at the bases of the differential transistor pair from the respective two different phase-lead branches, and thereby changing the frequency of the VCO.
Abstract:
Flicker (1/f) noise is suppressed in an oscillator by reducing oscillator voltage-frequency pushing to zero. A varactor (56) is incorporated in the resonator circuit and is biased with a tuning voltage setting the varactor to a capacitance value providing the zero oscillator pushing at a given frequency. A common bias connection (62) is provided between the varactor and the active element (64) such that a random perturbation voltage change across the active element also causes a change in voltage across the varactor, to compensate a change in oscillator frequency otherwise caused thereby. The varactor capacitance versus voltage characteristic is shaped such that a change in active element voltage provides a change in varactor voltage, and the combination of these voltage changes results in a zero change in oscillator frequency. The tuning slope of the oscillator provided by the varactor is opposite the tuning slope of the oscillator resulting from a change in active element voltage.
Abstract:
An oscillator having a circuit for fine tuning the frequency thereof while minimizing any effect on the output amplitude thereof. A state variable oscillator employs an inverter amplifier having a negative feedback resistor R.sub.f, a first integrator, and a second integrator. 180.degree. feedback from the second integrator is fed back through resistors R.sub.i and R.sub.v to an inverting input of the inverter amplifier. 90.degree. feedback from the first integrator is fed back partially through resistors R.sub.n and R.sub.v and partially through resistor R.sub.m to the inverting input, and also through resistor R.sub.c to the non-inverting input. A field effect transistor provides a common return to the non-inverting input to control oscillator amplitude. If R.sub.i R.sub.m =R.sub.n R.sub.f then R.sub.v may be adjusted to vary the frequency of the oscillator output signal without affecting its amplitude.
Abstract:
The present disclosure provides an adaptive adjustment circuit in a computer chip having a voltage-controlled oscillator (VCO) and a processor. The adaptive adjustment circuit comprises a frequency difference acquisition module to generate a frequency difference signal based on a first difference between an oscillation frequency of the VCO and a target frequency. The adaptive adjustment circuit also includes a power module to supply a working voltage to the VCO and the processor, adjust the working voltage based on the frequency difference signal, and supply the adjusted working voltage to the VCO and the processor.
Abstract:
An oscillator circuit includes a first resonator, a second resonator, and a frequency adjusting unit. The second resonator has a frequency characteristic different from a frequency characteristic of the first resonator. The frequency adjusting unit is configured to change a ratio between a contribution of the first resonator and a contribution of the second resonator so as to adjust an output frequency.
Abstract:
An oscillator circuit includes a first resonator, a second resonator, and a frequency adjusting unit. The second resonator has a frequency characteristic different from a frequency characteristic of the first resonator. The frequency adjusting unit is configured to change a ratio between a contribution of the first resonator and a contribution of the second resonator so as to adjust an output frequency.