Abstract:
A light guide for guiding light from multiple point sources arranged in a first direction (Y1) on a light source board includes a supporting unit including multiple supporting pieces provided to the light source board, arranged at regular intervals in the first direction (Y1), and a light guiding body continuous with the multiple supporting pieces and disposed downstream from the multiple point sources in a light emission direction (L). The light guiding body includes an incident surface, a light emission surface, multiple support ranges in which the supporting pieces are provided, and multiple light transmission ranges adjacent to the support ranges, respectively, in the first direction (Y1), to cause the light to exit the guiding body partly, and the multiple support ranges and the multiple light transmission ranges have substantially the same length in a second direction (X) perpendicular to the first direction (Y1).
Abstract:
A mounting device capable of mounting two objects of different sizes is disclosed. The mounting device includes a mounting member including a first end, a second end opposite to the first end, a mounting portion, a securing piece between the first end and the second end, and an installing plate including a first installing portion and a second installing portion. The mounting member is secured to the first installing portion and the second installing portion. When the mounting portion and the securing piece are engaged with the first installing portion, the first end is adapted to abut a first object. When the mounting portion and the installing portion are engaged with the second installing portion, the second end is adapted to abut a second object of a different size from a size of the first object.
Abstract:
In an image reader, an optical scanning unit reads an original image on an original document sheet. In the optical scanning unit, a lighting device is detachably attached to a housing to emit light toward the original document sheet. The housing houses a reading device to read the light reflected by the original document sheet. A shield member is detachably attached to the housing to shield the reading device from the lighting device to form a space for the reading device inside the housing. A slit is provided in the shield member to guide the light reflected by the original document sheet to the space for the reading device. A second positioner is provided on the shield member to engage a first positioner provided in the housing to position the reading device with respect to the lighting device.
Abstract:
An image reading apparatus includes an array substrate in which a plurality of point light sources is mounted along the main scanning direction, a light guide member disposed on a surface of the array substrate that mounts the plurality of point light sources, and guiding light from the plurality of point light sources to the document surface, a frame for fixing the light guide member and the array substrate, a positioning unit that determines the positional relationship of the frame with the light guide member and the array substrate in a configuration in which the incident surface of the light guide member is in proximity to or in contact with the plurality of point light sources; and an image reading unit that uses reflected light when illuminating light from the plurality of point light sources through the light guide member onto the document surface to thereby read the document image.
Abstract:
In an image reader, an optical scanning unit reads an original image on an original document sheet. In the optical scanning unit, a lighting device is detachably attached to a housing to emit light toward the original document sheet. The housing houses a reading device to read the light reflected by the original document sheet. A shield member is detachably attached to the housing to shield the reading device from the lighting device to form a space for the reading device inside the housing. A slit is provided in the shield member to guide the light reflected by the original document sheet to the space for the reading device. A second positioner is provided on the shield member to engage a first positioner provided in the housing to position the reading device with respect to the lighting device.
Abstract:
A mounting structure for an inverter circuit board for a light source lamp of an image reader in which mounting means for mounting the inverter circuit board for a light source lamp of an image reader onto a carriage is located to be operated from the direction in which the carriage moves in one embodiment. The inverter circuit and heat dissipation plate are removably mounted to an end of the full rate carriage. In another embodiment, the circuit board is mounted to the top for access from above the carriage.
Abstract:
A scanning module capable of finely tuning the optical length comprises a lamp tube, a base, a photosensitive substrate, and an adjustment unit. The lamp tube provides a required light source for a document to be scanned. The base has a reflective mirror set and a camera lens. The reflective mirror set is used to receive light from the document, and transmits the light to the camera lens for focusing. The photosensitive substrate is used to convert light outputted by the camera lens into electronic signals. The adjustment unit is used to adjust the optical length between the base and the photosensitive substrate. The total optical length can thus be adjusted to correct the inaccuracy of magnification. Or the distance between the camera lens and the photosensitive substrate can be adjusted to align the focal length within the allowable inaccuracy of magnification to achieve an output image of better quality.
Abstract:
A line scan camera comprises a printed circuit board upon which a charge-coupled device (CCD) is mounted. A lens component is fixed within a lens mount, and the base of the lens mount is adjustably mounted upon an optical bench. Calibration devices adjustably interconnect the lens mount to the printed circuit board and to the optical bench so as to calibrate the positional location of the lens component relative to the charge-coupled device (CCD) and to an object plane past which objects to be scanned and photographed are conveyed. In this manner, the focus distance defined between the lens component and the charge-coupled device (CCD) as well as the focal distance defined between the lens component and the object plane are fixed and do not need any further calibration. The object plane is defined upon the front surface of a sealed housing enclosure and all of the components are disposed within the housing enclosure so as to prevent dust and contaminants from collecting upon the optical components. LED arrays are disposed within the front of the housing so as to illuminate and properly expose the objects conveyed past the object plane. A positive pressure differential is also created within the sealed housing enclosure so as to prevent the ingress of dust and contaminants into the housing enclosure.
Abstract:
A line scan camera comprises a printed circuit board upon which a charge-coupled device (CCD) is mounted. A lens component is fixed within a lens mount, and the base of the lens mount is adjustably mounted upon an optical bench. Calibration devices adjustably interconnect the lens mount to the printed circuit board and to the optical bench so as to calibrate the positional location of the lens component relative to the charge-coupled device (CCD) and to an object plane past which objects to be scanned and photographed are conveyed. In this manner, the focus distance defined between the lens component and the charge-coupled device (CCD) as well as the focal distance defined between the lens component and the object plane are fixed and do not need any further calibration. The object plane is defined upon the front surface of a sealed housing enclosure and all of the components are disposed within the housing enclosure so as to prevent dust and contaminants from collecting upon the optical components. LED arrays are disposed within the front of the housing so as to illuminate and properly expose the objects conveyed past the object plane. A positive pressure differential is also created within the sealed housing enclosure so as to prevent the ingress of dust and contaminants into the housing enclosure.