Abstract:
An optical carriage of scanner has a mirror assembly and a device assembly, the mirror assembly has a mirror mount, some mirror holder, and some supporters, and the device assembly has a chassis. In this invention, the mirror assembly and the device assembly are mechanically connected after separately formation. Further, to ensure correct shape of these mirror holders and these supporters, they could be formed by metal punch, plastic ejection, or plastic process.
Abstract:
An optical reading device of a scanning apparatus includes a housing, two movable mirror clamps and two supporting plates. The housing contains therein a light source, a mirror set, a lens and an image sensor. These two movable mirror clamps are used for clamping both edges of a specific reflective mirror of said mirror set such that the position of said specific reflective mirror is adjustable by an assembler. These two supporting plates are protruded from opposite sides of said housing for supporting said movable mirror clamps.
Abstract:
An optical carriage of scanner has a mirror assembly and a device assembly, the mirror assembly has a mirror mount, some mirror holder, and some supporters, and the device assembly has a chassis. In this invention, the mirror assembly and the device assembly are mechanically connected after separately formation. Further, to ensure correct shape of these mirror holders and these supporters, they could be formed by metal punch, plastic ejection, or plastic process.
Abstract:
A light source device which can prevent a large-sized structure of the device, a light source device which can improve assembling efficiency and maintainability of the device, and an image forming method and apparatus in which occurrence of moisture condensation can be prevented, are provided. An LED substrate in which a large number of light emitting diodes (LED) are arranged on the surface thereof in a two-dimensional manner, a base, a Peltier element, and a radiating fin are formed integrally by urging force of a compression spring. The radiating fin is disposed in contact with a light source housing body. Further, in carrying out temperature adjustment control using the Peltier element, the temperature adjustment control is carried out only when the internal temperature of the device in which a light source device is provided, is a predetermined temperature or higher.
Abstract:
An apparatus for reading an image comprises an original mounting table for mounting an original, a first carriage which has a light source for irradiating light to the original and an optical system for guiding original-image light reflected from the original, and which moves along the original mounting table, a lens unit having a lens into which the original-image light enters and placed immediately under a passage on which the first carriage moves, a CCD assembly for receiving the original-image light passed through the lens and reading an image corresponding to the original-image light, a lens bracket cover having a bracket portion to which the CCD assembly is attached and a cover portion for covering the lens unit, and a lens base having the bracket portion of the lens bracket cover attached thereto, for supporting the lens unit.
Abstract:
A light source device which can prevent a large-sized structure of the device, a light source device which can improve assembling efficiency and maintenability of the device, and an image forming method and apparatus in which occurrence of moisture condensation can be prevented, are provided. An LED substrate in which a large number of light emitting diodes (LED) are arranged on the surface thereof in a two-dimensional manner, a base, a Peltier element, and a radiating fin are formed integrally by urging force of a compression spring. The radiating fin is disposed in contact with a light source housing body. Further, in carrying out temperature adjustment control using the Peltier element, the temperature adjustment control is carried out only when the internal temperature of the device in which a light source device is provided, is a predetermined temperature or higher.
Abstract:
A contact-type image sensor (20) comprises a case (21), a glass cover (22) provided on an upper surface of the case (21), a bottom substrate (23) mounted in a bottom surface of the case (21), light receiving elements (24) mounted on the bottom substrate, light emitting elements (25) for irradiating an object (D) on the glass cover (22) with light, and a rod lens array (27) for collecting the light reflected by the object (D) on the glass cover (22) onto the light receiving elements (24). The light emitting elements (25) are mounted on the bottom substrate (23). The contact-type image sensor further comprises a light guide (26) provided in the case (21) for efficiently directing the light from the light emitting elements (25) to a predetermined region (L) of the glass cover (22).
Abstract:
An image scanner is provided which is capable of preventing decrease in image contrast and improving the reading accuracy and quality of color images to a greater extent. An image scanner includes a unit case having an opening formed on one end surface thereof; light-source lamps and light-source lenses which are disposed in the inner portion of the opening of the unit case in such a manner as to face the opening; holding plates which are disposed in the inner portion of the opening of the unit case and which have formed therein slits for extending the terminals of the light-source lamps to the inside of the unit case; and CCD sensors, disposed at the end portion of the inside of the unit case on the side opposite to the opening, for reading an image of the original document by receiving, via a lens unit, light which is radiated onto a given original document placed near the opening from the light-source lamps via the light-source lenses and reflected from this original document.
Abstract:
A contact image sensor unit includes: a light source (10) illuminating an original; a rod-like light guide (11) guiding light from the light source to the original; an imaging element (12) forming reflected light from the original on a plurality of photoelectric conversion elements; a sensor substrate (14) on which the plurality of photoelectric conversion elements are mounted; a frame (15) to which they are attached and which has a positioning part (200) for attaching the light guide (11) thereto; and a supporting member (16) which attachably/detachably supports the light guide (11) and is attachably/detachably attached to the positioning part (200). Since the light guide (11) can be attached to the frame (15) without using an adhesive, the deformation of the light guide (11), the warpage of the contact image sensor unit and so on can be prevented.
Abstract:
A multi-functional device comprising an image forming apparatus to form a printing image and a scanner module to scan an image in a main scanning direction. The scanner module includes an illuminator to illuminate a light to a document mount, a sensor unit to read an image information of an object placed on the document mount, and an imaging lens which is disposed between the document mount and the sensor unit and focuses the light reflected from the object onto the sensor unit. The illuminator includes a light source to emit light, a light guiding unit which is lengthened in a sub-scanning direction, faces the document mount and changes a traveling path of the light emitted from the light source to illuminate the document mount, and a guide holder which comprises an installation part where the light guiding unit is installed, and a mounting part where the light source holder is mounted to provide the light source at least one side of the light guiding unit.