Abstract:
A reading apparatus that reads a sheet includes: a first light emitting diode (LED) configured to emit light with a specific wavelength; a light emitting element including a second LED configured to emit light with the specific wavelength and a phosphor configured to be excited by the light emitted from the second LED; a line sensor configured to generate a reference signal according to a quantity of received light emitted from the first LED and reflected off the sheet, and also generate an image signal according to a quantity of received light emitted from the light emitting element and reflected off the sheet; and a controller configured to generate an image representing the sheet from a differential result obtained by removing a component corresponding to the reference signal from the image signal.
Abstract:
An image reading apparatus includes a main unit, an openable unit, a cable connected to the openable unit and routed in the main unit, and a holding member attached to the main unit. The holding member includes a first guide portion configured to hold a first specified portion of the cable. The holding member, with the first guide portion holding the first specified portion of the cable, is configured to move from a first position to a second position. When the holding member is in the first position, the cable has no slack in a second specified portion of the cable, the second specified portion being closer to an end of the cable disposed in the openable unit than the first specified portion. When the holding member is in the second position, the cable has slack in a second specified portion of the cable routed in the main unit.
Abstract:
A light collecting member includes a lens to make incident light be collected on a light receiving member, a lens barrel to house the lens, an end portion into which a light enters of the lens barrel being arranged near the light receiving member and a fence member to cover the end portion into which a light enters of the lens barrel and the light receiving member, the fence member having an exhaust port formed in a manner extending in a vertical direction.
Abstract:
Two aperture members are disposed on each side of a lens array. In one aperture member, decreasingly tapered through holes having a cross sectional area that gradually decreases in a light incident direction and increasingly tapered through holes having a cross sectional area that gradually increases in the light incident direction are alternatively arranged. The other aperture member that is oppositely disposed with respect to the lens array has the same configuration. The center axes of the decreasingly tapered through holes and the center axes of the increasingly tapered through holes are coincident with each other. This enables to achieve an image forming optical element that has a large amount of light and less irregularity of the amount of light.
Abstract:
An optical module 100 includes an optical path unit 101 including a plurality of reflectors 104 for securing an optical path of reflected light from a manuscript, an image processing unit 102 including a reading device 105 which reads image information on the manuscript based on the reflected light from the manuscript entered via the optical path, and a connecting component 103 which connects the optical path unit 101 and the image processing unit 102 so that their positional relation will become a prescribed state.
Abstract:
To provide a rod-like light guide and a line lighting device including the rod-like light guide, both of which are easy to include in an image reading device, a contact-type image sensor and an image reading device. For instance, a protruding portion having a flat or curved surface is formed by grinding an end face of a rod-like light guide in a longitudinal direction while leaving at least 80% of the surface area of the end face, and a reflective surface is formed by bonding a heat transfer film to the protruding portion. Thus, even if a portion of the protrusion portion melts when performing thermal processing on the heat transfer film, the portion will not jut out beyond a cross-sectional area of the rod-like light guide, and the rod-like light guide can be easily contained in a case.
Abstract:
A sensor frame for an image sensor is manufactured in the step of forming a sensor frame for an image sensor by extrusion molding so that a frame support portion for supporting the frame is formed above a lens array holding portion, and the step of removing the thus-formed sensor frame support portion by machining while leaving parts of the support portion located at the longitudinally corresponding to the upper ends of the lens array holding portion. Accordingly, machined surfaces subjected to the machining exist outside the hollow space where the sensor ICs are located.
Abstract:
A manufacturing method for illuminant module is provided. The illuminant module, which is used to be installed in an image retrieving device, includes an illuminant, a transparent protective layer and a reflecting plated layer. The transparent protective layer envelops at least a part of the tube of the illuminant and protects the structure of the illuminant from being damaged by collision or compression caused by external forces. The reflecting plated layer, which, being installed in the transparent protective layer but situated at one side of the tube of the illuminant, is used to reflect a part of the light generated by the illuminant and direct the light to be emitted outwardly in the same direction, so that illumination efficiency and illuminant accuracy can be enhanced.
Abstract:
An optical carriage of scanner has a mirror assembly and a device assembly, the mirror assembly has a mirror mount, some mirror holder, and some supporters, and the device assembly has a chassis. In this invention, the mirror assembly and the device assembly are mechanically connected after separately formation. Further, to ensure correct shape of these mirror holders and these supporters, they could be formed by metal punch, plastic ejection, or plastic process.
Abstract:
A method of making a casing of an image sensor is provided. The method includes the steps of preparing the casing, and applying a static electricity preventive to the casing. The casing is formed with a light passage configured to conduct light emitted from a light source. The static electricity preventive is applied to the inner surfaces of the casing defining the light passage. While the application of the preventive is performed, flashes formed at the light passage are removed.