Abstract:
The invention relates to a method of connecting workpieces which is suitable notably for connecting an anode rod (5) to an end plate (6) of a rotor sleeve (7) in a rotary anode X-ray tube where on the one hand adequate strength is required and on the other hand an as small as possible cross-section of the anode rod so as to realize a heat barrier. The method is characterized mainly in that the objects are connected to one another by friction welding and that the cross-section is reduced, that is, outside a connecting zone in which the friction weld is situated, in such a manner that the strength of the connecting zone is at least slightly greater than that of the segment of reduced cross-section.
Abstract:
Carbon nanotubes are aligned within a host phase of a material that has molecules that will align under a certain influence. When the host molecules become aligned, they cause the carbon nanotube fibers to also become aligned in the same direction. The film of aligned carbon nanotubes is then cured into a permanent phase, which can then be polished to produce a thin film of commonly aligned carbon nanotube fibers for use within a field emission device.
Abstract:
There is provided a method in which a TFT with superior electrical characteristics is manufactured and a high performance semiconductor device is realized by assembling a circuit with the TFT. The method of manufacturing the semiconductor device includes: a step of forming a crystal-containing semiconductor film by carrying out a thermal annealing to a semiconductor film; a step of carrying out an oxidizing treatment to the crystal-containing semiconductor film; a step of carrying out a laser annealing treatment to the crystal-containing semiconductor film after the oxidizing treatment has been carried out; and a step of carrying out a furnace annealing treatment to the crystal-containing semiconductor film after the laser annealing. The laser annealing treatment is carried out with an energy density of 250 to 5000 mJ/cm2.
Abstract translation:提供了一种制造具有优异电特性的TFT的方法,并且通过与TFT组合电路来实现高性能半导体器件。 制造半导体器件的方法包括:通过对半导体膜进行热退火来形成含晶体的半导体膜的步骤; 对含结晶的半导体膜进行氧化处理的工序; 进行了氧化处理后的含晶体的半导体膜的激光退火处理的工序; 以及在激光退火之后对含晶体的半导体膜进行炉退火处理的步骤。 激光退火处理以250〜5000mJ / cm 2的能量密度进行。
Abstract:
The present invention provides a PDP structure comprising a first substrate, a second substrate and a Waffle barrier rib structure located between the first and second substrate. The Waffle barrier rib structure comprises three first barrier ribs having different width and a plurality of second barrier ribs perpendicular to the first barrier ribs. The second barrier ribs are located between the two first barrier ribs, and connect the wider structure of the two first barrier ribs. Therefore, discharge spaces are formed. Because of different width, the height difference of the barrier rib structure is formed after thermal process. Hence, gas can pass through the barrier ribs structure between the front and the back substrate sealed together.
Abstract:
A method for fabricating a light emitting device to be used for illuminating many kinds of luminous materials comprises the following steps. Firstly, an anode is provided. Then, an insulating layer is partially formed on a surface of the anode to define a plurality of light-emitting regions on the surface of the anode, wherein the plurality of light-emitting regions are uncovered by the insulating layer. Then, the many kinds of luminous materials are formed on corresponding light-emitting regions and the insulating layer so as to form a luminous material layer. Afterwards, a cathode is formed on the luminous material layer. The light emitting device produced by such method is also provided.
Abstract:
When a PDP 10 is produced by superposing, and fixing, a front plate 16 and a rear plate 18 on, and to, each other, a sheet member 20 including an X wiring layer 36 and a Y wiring layer 40 is fixed to the front plate 16 or the rear plate 18, so that X electrodes 46 and Y electrodes 48 are provided in respective discharge spaces 24. Thus, the X electrodes 46 and the Y electrodes 48 can be assembled with the front and rear plates 16, 18, by just placing the sheet member 20 between the two plates 16, 18. Therefore, in the PDP 10, the front plate 16, the rear plate 18, and the discharge electrodes 46, 48 are free of distortions resulting from a heat treatment that would otherwise be carried out to form the electrodes.
Abstract:
A method of manufacturing a plasma display panel, whose glass substrate is not tinged and luminance is high, is provided, even when silver material is used. A layer including silver compounds, which include sulfur generated on a surface of an electrode by reacting on sulfur in air, is removed before a forming process of a dielectric layer. Then decomposition of the compound is restricted in a firing process of the dielectric layer. Even when the electrode having the silver material with high electrical conductivity is used, yellow coloration on the glass substrate is prevented. As a result, a high quality plasma display panel which does not decrease in luminance is provided.
Abstract:
A method for manufacturing a plasma display panel is provided which is capable of enhancing luminance of a plasma display panel by forming a grid-shaped rib in the plasma display panel so as to be square-shaped. In the method for manufacturing a plasma display panel in which a front substrate and a rear substrate are arranged with the grid-shaped rib being interposed between the front substrate and the rear substrate in a manner in which both the substrates face each other, the grid-shaped rib is formed by using a resist mask in which a cut is formed only in both corner portions, in a pattern in a direction intersecting the column electrode, contacting a pattern parallel to the column electrode, in a pattern corresponding to a shape of the grid-shaped rib.
Abstract:
A image intensifier tube (14) includes a housing (18) carrying a photocathode (22) and a microchannel plate (24). The housing also receives axially extending fine-dimension spacing structure (22a) interposed around an active area 22b of the photocathode and the microchannel plate to establish and maintain a selected fine-dimension, precise PC-to-MCP spacing between these structures. The housing includes yieldable deformable electrical contact structure (56null) for establishing and maintaining contact with the microchannel plate, and yieldable deformable sealing structure (58) allowing axial movement of the photocathode relative to the housing structure as the tube is assembled and the axial spacing structure controls PC-to-MCP spacing. The result is that the PC-to-MCP spacing dimension of the tube is largely isolated from dimensional variabilities of the housing and is established and maintained precisely during manufacturing of the tube despite stack up of tolerances for the housing and its components.
Abstract:
A method of producing a ceramic metal halide discharge lamp having a monolithic seal between a sapphire (single crystal alumina) arc tube and a polycrystalline alumina (PCA) end cap. The method includes the steps of providing an arc tube of fully dense sapphire and providing an end cap made of unsintered compressed polycrystalline alumina powder doped with magnesium oxide and yttrium oxide. The end cap is heated until it is presintered to remove organic binder material at a low temperature relative to the sintering temperature. The presintered end cap is placed on an end portion of the arc tube to form a close interface between the two. The presintered end cap and adjacent arc tube are then heated to until the end cap is fully sintered onto the arc tube and the sapphire tube grows into the end cap. A monolithic seal is formed along the interface between the end cap and the arc tube as the sapphire tube grows into the polycrystalline alumina end cap. The yttrium oxide promotes increased growth between sapphire tube and the PCA end cap and is not detrimental to the metal halide chemistry, nor subject to erosion by the metal halide chemistry.