Abstract:
A self-referenced on-die voltage droop detector generates a reference voltage from the supply voltage of an integrated circuit's power distribution network, and compares this reference voltage to the transient supply voltage in order to detect voltage droops. The detector responds to detected occurrences of voltage droop with low latency by virtue of being located on-die. Also, by generating the reference voltage from the integrated circuit's power domain rather than using a separate reference voltage source, the detector does not introduce noise and distortion associated with a separate power domain.
Abstract:
A semiconductor chip allows for a selected amount of on-die decoupling capacitance to be connected to a very-large-scale integrated circuit (VLSI) system after the circuit design is complete. The semiconductor chip comprises an integrated circuit disposed on a packaging substrate, and a power distribution network that is electrically connectable to the integrated circuit via a programmable connectivity array via the packaging substrate.
Abstract:
Systems and methods for generating a timeout signal based on a clock counter associated with a data request. An interface component is configured for receiving a data request from a master device and forwarding the data request to a slave device. A timeout component is configured for maintaining a clock counter associated with the data request and generating a timeout signal in response to a determination that a threshold level associated with the clock counter is reached before receiving a data response associated with the data request from the slave device.
Abstract:
Cable systems and assemblies integrate a reduced number of twin axial copper pairs to transmit and received in a full-duplex transmission signals at transmission speeds greater than or equal to one hundred Giga bytes per second. The reduced number of twin axial copper pairs comprise four or less twin axial copper pairs, in which each pair forms a single twin axial full-duplex cable for passive or active communication of the signals.
Abstract:
Systems and methods are provided for simplifying load acquire and store release semantics that are used in reduced instruction set computing (RISC). Translating the semantics into micro-operations, or low- level instructions used to implement complex machine instructions, can avoid having to implement complicated new memory operations. Using one or more data memory barrier operations in conjunction with load and store operations can provide sufficient ordering as a data memory barrier ensures that prior instructions are performed and completed before subsequent instructions are executed.
Abstract:
Facilitating reduced latency via stashing in multi-level cache memory architectures of systems on chips (SoCs) are provided. One method involves stashing, by a device includes a plurality of multi-processor central processing unit cores, first data into a first cache memory of a plurality of cache memories, the plurality of cache memories being associated with a multi-level cache memory architecture. The method also includes generating control information including: a first instruction to cause monitoring contents of a second cache memory of the plurality of cache memories to determine whether a defined condition is satisfied for the second cache memory; and a second instruction to cause prefetching the first data into the second cache memory of the plurality of cache memories based on a determination that the defined condition is satisfied.
Abstract:
Systems and methods for modifying a data stream for rate adaptation. A clock component receives a data stream at a first clock rate. In an aspect, a rate adaptation component inserts a first identification codeword into a particular location in the data stream based on a set of encoding rules in response to a determination that the first clock rate is lower than a second clock rate associated with a device configured for receiving a rate-adapted version of the data stream. In another aspect, the rate adaptation component removes a predefined codeword from the data stream and transforms another predefined codeword in the data stream into a second identification codeword in response to a determination that the first clock rate is greater than the second clock rate.
Abstract:
A decoupling capacitor circuit design facilitates high operational frequency without sacrificing area efficiency. In order to disassociate the sometimes opposing design criteria of high operational frequency and area efficiency, a p-channel field effect transistor (PFET) and an n-channel field effect transistor are connected in a half-cross-coupled (HCC) fashion. The HCC circuit is then supplemented by at least one area efficient capacitance (AEC) device. The half-cross-coupled transistors address the high frequency design requirement, while the AEC device(s) address the high area efficiency requirement. The design eliminates the undesirable trade-off between operating frequency and area efficiency inherent in some conventional DCAP designs.
Abstract:
A transceiver architectures can contain an encoder and a decoder for communicating high speed transmissions. The encoder can modulate signal data based on an FEC code that has a symbol size that is not matched to a symbol size of a hexacode. Any code where the symbol size is less than the sample size for coding can be serially concatenated. During decoding the multi-level decoding leech lattice and FEC decoder can iteratively pass their outputs back and forth to each other until the encoded bits are decoded.
Abstract:
A fiber optical connector microlens is provided with a self- aligning optical fiber cavity. The microlens includes a convex first lens surface and a second lens surface. A fiber alignment cavity is integrally formed with the second lens surface to accept an optical fiber core. A lens body is interposed between the first and second lens surfaces, having a cross-sectional area with a lens center axis, and the fiber alignment cavity is aligned with the lens center axis. In a first aspect, the fiber alignment cavity penetrates the lens second surface. In a second aspect, an integrally formed cradle with a cradle surface extends from the lens second surface, and a channel is formed in the cradle surface, with a center axis aligned with the lens center axis. The fiber alignment cavity includes a bridge covering a portion of the channel.