Abstract:
An apparatus can include a pressure vessel that defines an interior region that can contain a liquid and/or a gas. A piston is movably disposed within the interior region of the pressure vessel. A divider is fixedly disposed within the interior region of the pressure vessel and divides the interior region into a first interior region on a first side of the divider and a second interior region on a second, opposite side of the divider. The piston is movable between a first position in which fluid having a first pressure is disposed within the first interior region and the first interior region has a volume less than a volume of the second interior region, and a second position in which fluid having a second pressure is disposed within the second interior region and the second interior region has a volume less than a volume of the first interior region.
Abstract:
A rotary valve adapted for use in utility scale fluidic systems improves over conventional valving schemes by affording reductions in weight, pressure drop, cost, and actuation time, as well as providing improvements in decompression performance, higher pressure capability, and longer operational life. One embodiment of a three way valve assembly utilizes electric actuation to adjust decompression in real time and facilitate port shaping. The valve assembly utilizes a pressure balanced rotor (4) and seals (70, 90) to reduce actuation and bearing loads, as well as increase seal life.
Abstract:
Systems, methods and devices for optimizing heat transfer within a device or system used to compress and/or expand a gas, such as air, are described herein. In some embodiments, a compressed air device and/or system can include an actuator such as a hydraulic actuator that can be used to compress a gas within a pressure vessel. An actuator can be actuated to move a liquid into a pressure vessel such that the liquid compresses gas within the pressure vessel. In such a compressor/expander device or system, during the compression and/or expansion process, heat can be transferred to the liquid used to compress the air. The compressor/expander device or system can include a liquid purge system that can be used to remove at least a portion of the liquid to which the heat energy has been transferred such that the liquid can be cooled and then recycled within the system.
Abstract:
An apparatus can include a piston movably disposed within a pressure vessel and defines a first interior region and a second interior region. The piston has a first position in which the first interior contains a gas having a first pressure and has a volume greater than the second interior region, and a second position in which the second interior region contains a gas having a second pressure and has a volume greater than the first interior region. A seal member is attached to the piston and to the pressure vessel. The seal member has a first configuration in which at least a portion of the seal member is disposed at a first position when the piston is in its first position, and a second configuration in which the portion of the seal member is disposed at a second position when the piston is in its second position.
Abstract:
Systems, methods and devices for optimizing heat transfer within a device or system used to compress and/or expand a gas, such as air, are described herein. For example, systems, methods and devices for optimizing the heat transfer within an air compression and expansion energy storage system are described herein. A compressor and/or expander device can include one or more of various embodiments of a heat transfer element that can be disposed within an interior of a cylinder or pressure vessel used in the compression and/or expansion of a gas, such as air. Such devices can include hydraulic and/or pneumatic actuators to move a fluid (e.g., liquid or gas) within the cylinder or pressure vessel. The heat transfer element can be used to remove heat energy generated during a compression and/or expansion process.
Abstract:
Systems and methods for efficiently operating a hydraulically actuated device/system are described herein. For example, systems and methods for efficiently operating a gas compression and expansion energy storage system are disclosed herein. Systems and methods are provided for controlling and operating the hydraulic actuators used within a hydraulically actuated device/system, such as, for example, a gas compression and/or expansion energy system, within a desired efficiency range of the hydraulic pump(s)/motor(s) used to supply or receive pressurized hydraulic fluid to or from the hydraulic actuators. In such a system, a variety of different operating regimes can be used depending on the desired output gas pressure and the desired stored pressure of the compressed gas. Hydraulic cylinders used to drive working pistons within the system can be selectively actuated to achieve varying force outputs to incrementally increase the gas pressure within the system for a given cycle.
Abstract:
A compression and expansion system includes a pressure vessel having a variable volume working chamber therein. The pressure vessel has a conduit through which at least one fluid can be introduced into and discharged from the working chamber. The system further includes a heat transfer element disposed within the working chamber and including a layer and at least one of a fin and a spacing element. The pressure vessel is operable to compress fluid introduced into the working chamber such that heat energy is transferred from the compressed fluid to the heat transfer element, and is further operable to expand fluid introduced into the working chamber such that heat energy is transferred from the heat transfer element to the expanded fluid.
Abstract:
A wind turbine system (16) for producing compressed air from wind energy. The wind turbine harvests energy from wind to produce mechanical energy. A compressor (22) receives mechanical energy from the wind turbine to compress air to an elevated pressure. Thermal energy may be removed from the air, and the air is stored in a storage device, such that the air may be released from the storage device on demand.
Abstract:
A modular compressed air energy storage system includes modular low pressure and high pressure subsystems coupled together with interstage pipes. Each of the subsystems includes a hydraulic vessel adapted to contain a heat transfer liquid and having a piston disposed therein for horizontal reciprocating movement. First and second pressure vessels are coupled to the hydraulic vessel on opposite sides of the piston, each adapted to contain the heat transfer liquid and/or a gas. First and second heat transfer devices are respectively disposed within upper regions of the pressure vessels. The piston is moveable in a first direction to displace at least some of the heat transfer liquid from the hydraulic vessel to the first pressure vessel and is moveable in a second direction to displace at least some of the heat transfer liquid from the hydraulic vessel to the second pressure vessel.
Abstract:
An underground fluid storage structures formed by mechanical excavation of a subsurface formation in a controlled fashion. The structure comprises vertical hols (260, 270) and transversal caverns (256) of circular section and preferably in spiral arrangement. Storage caverns as described herein may further employ hydraulic pressure compensation to prevent wide pressure variations in the storage caverns, and to provide relatively constant injection and discharge pressures when introducing or releasing stored fluids. The prefered application is compressed air energy storage (CAES) systems for storing energy in the form of compressed air in order to generate electricity.