Abstract:
Lead extensions, systems, and methods providing MRI compatible deep brain stimulation (DBS) and spinal cord stimulation (SCS) systems are described. Lead extensions are provided having band stop filters (BSFs) which resonate at a frequency expected from MRI systems to create a very high impedance which can effectively decouple the implanted lead from the lead extension proximal of the BSF and change the effective length. Changing the effective length can reduce the likelihood of undesirably heating tissue near the DBS/SCS electrodes during MRI. Some lead extensions include BSFs in a distal connector for coupling to the lead contacts. The BSFs can be included within a burr hole cap base which can also include a connector for connecting to the DBS lead. DBS and SCS leads having a sacrificial proximal portion and intermediate electrical contacts are also provided.
Abstract:
One or more inductors and one or more capacitors are physically disposed relative to one another in series and are electrically connected to one another in parallel to form a bandstop filter. Chip inductors and chip capacitors having spaced apart conductive terminals are physically arranged in end-to-end abutting relation to minimize electrical potential between adjacent conductive terminals. The bandstop filter may be hermetically sealed within a biocompatible container for use with an implantable lead or electrode of a medical device. The values of the inductors and the capacitors are selected such that the bandstop filter is resonant at one or more selected frequencies, such as an MRI pulsed frequency.
Abstract:
A shielded three-terminal flat-through EMI/energy dissipating filter includes an active electrode plate through which a circuit current passes between a first terminal and a second terminal, a first shield plate on a first side of the active electrode plate, and a second shield plate on a second side of the active electrode plate opposite the first shield plate. The first and second shield plates are conductively coupled to a grounded third terminal. In preferred embodiments, the active electrode plate and the shield plates are at least partially disposed with a hybrid flat-through substrate that may include a flex cable section, a rigid cable section, or both.
Abstract:
An improved alkali metal/mixed metal oxide electrochemical cell capable of delivering high current pulses, rapidly recovering its open circuit voltage and having high current capacity, is described. The stated benefits are realized by dissolving a carbon oxide such as CO2 in the electrolyte.
Abstract:
A method for preparing an electrode component comprises mixing an electrode active material in a water-based environment with the aid of surfactants. A preferred embodiment of this process comprises combining a high surface area carbonaceous cathode active material (10) with a water/surfactant mixture (14) and then adding a fluoro-polymer as the binder material to the slurry. The resulting paste (16) is processed and formed into the cathode material. This process replaces the use of isopropyl alcohol with the water/surfactant mixture as the solvent. Preferred surfactants include those of the polyglycol family.
Abstract:
A method for preparing a cathode having as active material silver vanadium oxide formed by chemical addition, reaction or otherwise intimate contact of elemental silver and a vanadium-containing compound present in an anhydrous mixture, is described. The present invention provides alternate preparation techniques for improving chemical control in the formation of a cathode for incorporation into an electrochemical cell.
Abstract:
A transient voltage suppressing (TVS) circuit includes an implantable RFID chip, an antenna associated with the RFID chip, and a transient voltage suppressor electrically connected in parallel to both the RFID chip and the antenna. The transient voltage suppressor may be formed of an array of diodes, such as back-to-back diodes, at least one Zener diode, or back-to-back or series opposing Zener diodes. In preferred embodiments, the antenna is formed of a biocompatible material suitable for long-term exposure to body tissue and body fluids, and the RFID chip and the transient voltage suppressor are disposed within a hermetically sealed biocompatible container.
Abstract:
Decoupling circuits are provided which transfer energy induced from an MRI pulsed RF field to the housing for an active implantable medical device (AIMD) which serves as an energy dissipating surface. This is accomplished through broadband filtering or by resonant filtering. In a passive component network for an AIMD, a frequency selective energy diversion circuit is provided for diverting high-frequency energy away from an AIMD lead to the AIMD housing for dissipation of said high-frequency energy.
Abstract:
An EMI shielded conduit assembly for an active implantable medical device (AIMD) includes an EMI shielded housing for the AIMD, a hermetic feedthrough terminal associated with the AIMD housing, and an electronic circuit board, substrate or network disposed within the AIMD housing remote from the hermetic feedthrough terminal. At least one leadwire extends from the hermetic feedthrough terminal to the remote circuit board, substrate or network. An EMI shield is conductively coupled to the AIMD housing and substantially co-extends about the leadwire in non-conductive relation thereto.
Abstract:
A telemetry wake-up circuit is electrically disposed between a telemetry transceiver associated with an AIMD, and an RF tag. The RF tag may be remotely interrogated to generate a signal to which the telemetry wake-up circuit is responsive to switch the telemetry transceiver from a sleep mode to an active telemetry mode. In the sleep mode, the telemetry transceiver draws less than 25,000 nanoamperes from the AIMD, and preferably less than 500 nanoamperes.