Abstract:
The presented devices and methods are directed to efficient and effective photon emission. In one embodiment, high-performance tunnel junction deep ultraviolet (UV) light-emitting diodes (LEDs) are created using plasma-assisted molecular beam epitaxy. The device heterostructure was grown under slightly Ga-rich conditions to promote the formation of nanoscale clusters in the active region. The nanoscale clusters can act as charge containment configurations. In one exemplary implementation, a device operates at approximately 255 nm light emission with a maximum external quantum efficiency (EPE) of 7.2% and wall-plug efficiency (WPE) of 4%, which are nearly one to two orders of magnitude higher than previously reported tunnel junction devices operating at this wavelength. The devices exhibit highly stable emission originating from highly localized carriers in Ga-rich regions formed in the active region, with nearly constant emission peak with increasing current density up to 200 A/cm2, due to the strong charge carrier confinement related to the presence of nanoclusters (e.g., Ga-rich) and radiative emission originating from highly localized carriers in Ga-rich regions formed in the active region
Abstract:
An intracellular monitoring device (IMD) that fits completely inside a living cell, and causes no significant impairment, to a cell's normal biological processes. The IMD monitors a cell for its level of a biological substance (e.g., calcium ion concentration) of interest. If the biological substance reaches or exceeds a threshold, the IMD transmits an electromagnetic signal, received by an antenna outside the cell. Each IMD has its electromagnetic signal encoded with a unique frequency. Detection of the frequency components, in the signals received by an antenna, permits identification of the source IMD's. A high calcium ion concentration is indicative of a strongly-activated cerebral cortex neuron. Brain tissue is relatively transparent to near infrared, making it a good frequency band, for the electromagnetic signals from neuron-monitoring IMD's. The near infrared of each IMD can be produced by quantum dots, powered by bioelectric catalysis triggered by high calcium ion concentration.
Abstract:
Novel human interleukin-2 (IL-2) muteins or variants thereof are provided. In particular, provided are IL-2 muteins that have an increased binding capacity for IL-2Rβ receptor and a decreased binding capacity for IL-2Rγc receptor, as compared to wild-type IL-2. Such IL-2 muteins are useful, for example, as IL-2 partial agonist and antagonists in applications where reduction or inhibition of one or more IL-2 and/or IL-15 functions is useful (e.g., in the treatment of graft versus host disease (GVHD) and adult T cell leukemia). Also provided are nucleic acids encoding such IL-2 muteins, methods of making such IL-2 muteins, pharmaceutical compositions that include such IL-2 muteins and methods of treatment using such pharmaceutical compositions.
Abstract:
Novel human interleukin-2 (IL-2) muteins or variants thereof are provided. In particular, provided are IL-2 muteins that have an increased binding capacity for IL-2Rβ receptor and a decreased binding capacity for IL-2Rγc receptor, as compared to wild-type IL-2. Such IL-2 muteins are useful, for example, as IL-2 partial agonist and antagonists in applications where reduction or inhibition of one or more IL-2 and/or IL-15 functions is useful (e.g., in the treatment of graft versus host disease (GVHD) and adult T cell leukemia). Also provided are nucleic acids encoding such IL-2 muteins, methods of making such IL-2 muteins, pharmaceutical compositions that include such IL-2 muteins and methods of treatment using such pharmaceutical compositions.
Abstract:
Disclosed herein are bisarylmethylthioacetamides and bisarylmethylthioethylamines useful as inhibitors of monoamine transporters. The compounds are potent and/or selective inhibitors of dopamine (DA), serotonin (5-HT), and/or norepinephrine (NE) reuptake via their respective transporters, DAT, SERT and NET. Also disclosed are methods for eliciting a wake-promoting or cognitive or attention enhancing effect and for treating substance use disorders, attention deficit (hyperactivity) disorder, depressive disorders, bipolar disorder or other neuropsychiatric disorders sleep disorders or cognitive impairment using the compounds.
Abstract:
A novel MRI-compatible amplifier design uses positive feedback from a low-noise Field-Effect Transistor to amplify the signal current within a resonant NMR coil. The amplified signal current in this low-power circuit produces RF flux can be coupled out to receiving loops positioned externally without significant loss in sensitivity. In other aspects, the amplifier may be remotely powered by external resonant loops, a small non-magnetic battery, or optical power, such that the NMR coil can be positioned during highly invasive procedures such as for surgical resection of tumors in deep-lying tissues to develop high-resolution images.