Abstract:
The invention relates to a system comprising a main electrical unit (2) and a peripheral electrical unit (3, 4,5), wherein the main electrical unit and the peripheral electrical unit are switchable between a low-power mode and a high-power mode. The main electrical unit is adapted to hand over a control of the system to the peripheral electrical unit, if the peripheral electrical unit is in the high-power mode, and to switch from the high-power mode to the low-power mode, after the control has been handed over. The peripheral electrical unit is adapted to receive the control from the main electrical unit and to control the system, if the peripheral electrical unit is in the high-power mode. This allows the system to be still in operation mode, although the main electrical unit has been switched to the low-power mode, thereby reducing the power consumption of the system.
Abstract:
The present invention relates to a transducer (11) comprising - a membrane (31) configured to change shape in response to a force, the membrane (31) having a first major surface (16) and a second major surface (17), - a piezoelectric layer (18) formed over the first major surface (16) of the membrane (31), the piezoelectric layer (18) having an active portion, - first and second electrodes (19) in contact with the piezoelectric layer (18), wherein an electric field between the first and second electrodes (19) determines the mechanical movement of the piezoelectric layer (18), -support structures (40) at the second major surface (17) of the membrane (15) on adjacent sides of the active portion of the piezoelectric layer (18), at least part of the support structures (40) forming walls perpendicular, or at least not parallel, to the second major surface (17) of the membrane (31), so as to form a trench (41) of any shape underlying the active portion, so that an ultrasound transducer is obtained with a high output pressure at the support side than at the opposite side. The invention also relates to a method of forming such a transducer, and an array comprising at least one transducer of the like.
Abstract:
The invention relates to an illumination device (1000) comprising an at least partially transparent solar cell (200) that is arranged at the back side of an at least partially transparent light source (100). Preferably, the light source (100) is an OLED that is structured into a plurality of electroluminescent zones (131) and inactive zones (132). The electroluminescent zones are preferably aligned with reflective zones (311) of a mirror layer (310) that is disposed between the light source (100) and the solar cell (200).
Abstract:
The present invention refers to a lighting system comprising ambient light sources and task light sources, and occupancy sensors for detecting occupancy in a number of occupancy zones and for controlling the ambient light sources and task light sources. Each occupancy sensor is provided to communicate wirelessly with other occupancy sensors. On the detection of occupancy of at least one zone, the occupancy sensors detecting the occupancy active at least one ambient light source and send a control signal to other occupancy sensors to active other ambient light sources, and the intensity of a group of task light sources illuminating the occupied zone is set to a level higher than the intensity of the remaining task light sources. The invention also refers to a respective method for controlling a lighting system of this kind.
Abstract:
The invention relates to automatically commissioning of devices of a networked control system, particularly to automatically commissioning (auto-commissioning) of light sources of a lighting system, where a control of light sources on an individual and local basis is required. A basic idea of the invention is to route commissioning messages through a grid, particularly an approximately rectangular grid of devices in that each device is able to receive commissioning messages from and to transmit commissioning messages to directly neighbored devices in the grid via light. An embodiment of the invention relates to a method for automatically commissioning of devices (10, 12, 14, 16, 18) of a networked control system, which comprises several devices arranged in a grid (20), wherein each device is adapted for routing messages, which were received from directly neighbored devices in the grid, to directly neighbored devices in the grid via light, wherein the commissioning comprises the acts of - transmitting a commissioning message (SlO), which comprises a hops counter, by a first device (10) to a second device (12), which is neighbored to the first device in a predetermined direction (22) in the grid, - receiving the commissioning message (S 12) from the first device by the second device, - updating the hops counter (S 14) by the second device and a location counter of the second device and - transmitting the commissioning message (S 16) with the updated hops counter to one or more third devices.
Abstract:
The present invention relates to a method for wireless communication in a network comprising a resource-restricted end device (ZBLD), and at least one router device (R5), wherein the method comprises the following steps: the end device (ZBLD) transmitting a data frame to be forwarded to a destination device in the network, - the router device (R5) receiving the data frame, the router device associating a delay to the data frame and scheduling transmission of the frame after this delay, in case the router device listening that the data frame has been forwarded by another router device, cancelling the scheduled transmission of the data frame. The invention also relates to a router device and a network therefor.
Abstract:
This invention relates to a photovoltaic system for electronic appliance. The photovoltaic system comprises an energy concentrator having an outer layer (201) and an inner layer (202), the outer layer (201) adapted to gather incoming electromagnetic radiation into the energy concentrator (101) and the inner layer (202) being adapted for reflecting the incoming electromagnetic radiation such that the incoming electromagnetic radiation becomes concentrated within the energy concentrator (101). The system further comprises a solar cell (102) optically coupled to the energy concentrator (101), such that light concentrated in the energy concentrator is directed to the solar cell, the solar cell adapted to act as a power source for the electronic appliance (103). The outer layer (201) of the energy concentrator (101) forms part of an outer surface of the electronic appliance (103) and the inner layer (202) of the energy concentrator (101) is formed around a cavity for hosting electronic or mechanical components of the electronic appliance (103) and the energy concentrator is configured to reflect light through the energy concentrator (101) around at least a part of the cavity (305).
Abstract:
A method is provided of changing between modes in a device. The method comprises changing the mode of the device in response to a change in the temperature of a first point of the device relative to the temperature of a second point of the device. Such a change in temperature may be created, for example, by the body heat from a user picking the device up. In certain embodiments, this allows the device to be switched between a completely powered-down mode to a powered-on mode without consuming any power in the powered-down mode. Further, the method provides a convenient and user- friendly way of operating the device.
Abstract:
The invention provides a light collector (1) comprising a luminescent material element (20), a discontinuous semi-transparent layer (40) adjacent to a first side of the luminescent material element (20), wherein due to the discontinuity of the semi-transparent layer (40) at least one first portion (21) of the luminescent material element covered by the semi-transparent layer and at least one second portion (21) of the luminescent material element not covered by the semi-transparent layer (40) are formed, and a light generating means (10) arranged at a second side of the luminescent material element (20). Further, a method for concentrating light in a light collector (1) is provided, comprising the following method steps: capturing light from the environment by means of a luminescent material (20), concentrating the light in the luminescent material (20) by means of a semi-transparent layer (40) arranged on the luminescent material (20) and light generating means (10), emitting the light in a pre-determined area (22) of the light collector (1) by means of an out-coupling structure (30) so as to generate a pre-determined light emitting image.
Abstract:
A presence detection system (1) for detecting a presence of an object (3), particularly a person or an animal or vehicle, within an area (5) divided in detection zones (9A;9B;9C;9D) covering the area. The system comprises a movement detection device (11A;11B;11C;11D) for detecting a movement of the object. The system further comprises an electronic processing device (13) for storing information relating to a position of the object in a zone-wise way, based on a detected movement of the object. The electronic processing device is configured for determining the presence of the object within the area based on a detected movement of the object and stored information relating to the position of the object. The system is highly sensitive and highly prevents false presence detections. The invention also relates to a method for presence detection, and a lighting system comprising the presence detection system.