Abstract:
An optical frequency modulated transmitter includes a plurality of separately phased-controlled slave lasers, the outputs of which are combined to form a single output beam of the transmitter. A master optical oscillator outputs an optical signal for injection locking the plurality of slave lasers, the optical signal being frequency modulated directly in the master optical oscillator or externally thereof. Additionally, a method of frequency modulating an optical beam is disclosed using a plurality of slave lasers. Each of the slave lasers has an output, the outputs of which are combined to form the optical beam. The plurality of slave lasers is injection locked to an optical output of a master oscillator. The optical output of the master oscillator is frequency modulated before the optical output is applied to the plurality of lasers. Each slave laser of the plurality is phased controlled relative to other slave lasers of the plurality.
Abstract:
A photo-EMF sensor and a method of making same has a substrate with a semiconducting layer; a plurality of sensing regions in the layer, each sensing region including (i) a pair of electrodes disposed in, on or above the layer and (ii) an active region in the layer disposed adjacent said pair of electrodes; and a plurality of inactive regions in said the arranged between adjacent sensing regions. The inactive regions and the sensing regions are dosed with a desensitizing agent, the inactive regions receiving a relatively higher dose of the desensitizing agent and the sensing regions receiving a relatively lower dose of the desensitizing agent. The active layer is preferably placed in a monolithic Fabry-Perot cavity to enhance the optical efficiency and performance of the sensor.
Abstract:
In a method and apparatus for converting optical wavelength division multiplexed channels to wireless channels, the information carrying optical carriers are first de-multiplexed and each optical carrier is then extracted from the data using an optical channelizing technique. The optical frequency of each of the extracted optical carriers is then shifted by an amount equal to the desired wireless carrier frequencies in the broadband wireless channels. Optical heterodyning of the frequency-shifted extracted lightwave carriers with the original data-containing optical signals, which are mutually in phase coherence, in a photodetector results in a set of wireless carriers each modulated with the data carried by the corresponding optical channel.
Abstract:
An optical apparatus for coherent detection of an input optical beam. The apparatus includes a beam splitter for splitting the input optical beam into a first component and a second component; an optical delay device arranged to receive the second component, the optical delay device imposing an intentional delay in the second component of the input optical beam; and an adaptive beam combine coupled to receive the second component with a delay imposed thereon by the optical delay device; and the first component from the beam splitter. The adaptive beam combine has two exiting components: a first exiting component being representative of the difference of the first and second components received thereby and a second exiting component being representative of the sum of the first and second components received thereby. A detector arrangement is provided for receiving and detecting the first and second exiting components from the adaptive beam combiner.
Abstract:
A compact sensor for detection of chemical and/or biological compounds in low concentration. The sensor comprises electro-magnetic microcavities. The agent to be detected passes the microcavities, is absorbed and/or absorbed by the microcavities, and modifies the electromagnetic field inside the microcavities. After the agent has been adsorbed and/or absorbed, a probe beam is applied to the microcavities. The change of electromagnetic field is detected by the detector, and the frequency of the probe beam at which the resonance is observed, is indicative of a particular agent being present. A method for detecting chemical and/or biological compounds using the sensor.
Abstract:
A system for wavefront aberration reduction of an incident optical beam. The system includes a spatial light modulator (1) for receivingthe incident optical beam (4) and forming an output optical beam (5), the output beam (5) being aberration-reduced compared to the incident beam (4); a common-path interferometer for receiving a portion of the output optical beam (5) and for generating an interference fringe pattern by introducing a phase shift to one part of said portion of the output optical beam, the interference fringe pattern being applied to said spatial light modulator and comprising essentially all of the light available in said portion of the output optical beam (5); wherein the interference fringe pattern is representative of the wavefront error of the incident optical beam and theinterference fringe pattern activates said spatial light modulator (1) such that said spatial light modulator performs wavefront errorcorrection on the output optical beam.
Abstract:
This invention provides a dynamic interconnection system which allows to couple a pair o foptical beams carrying modulation information. In accordance with this invention, two optical beams emanate from transceivers at two different locations. Each beam may not see the other beam point of origin (non-line-of-sight link), but both beams can see a third platform that contains the system of the present invention. Each beam incident on the interconnection system is directed into the reverse direction of the other, so that each transceiver will detect the beam which emanated from the other transceiver. The system dynamically compensates for propagation distortions preferably using closed-loop optical devices, while preserving the information encoded on each beam.
Abstract:
A method and apparatus for compensating for phase fluctuations incurred by an optical beam travelling through free space, especially a turbulent atmosphere. A transmitting station a plurality of uniquely tagged optical beams through free space. The plurality of uniquely tagged optical beams are received at a receiving station, where a parameter of each uniquely tagged optical beam is quantified. Information associated with the quantified parameter for each uniquely tagged optical beam is then sent back to the transmitting station via a wireless feedback link. Using the information, the transmitting station adjusts at least one uniquely tagged optical beam to compensate for phase fluctuations.
Abstract:
A conformal retro-modulator optical apparatus. The apparatus includes an array of multiple quantum well devices disposed in a thin array. A plastic support element is bonded to the thin array, the plastic support element having a thickness greater that of the thin array. The plastic support element is preferably plastic at elevated temperatures above room temperature, thereby allowing the plastic support element and the thin array of multiple well device disposed therein to conform to a predetermined shape, yet being rigid at room temperature.
Abstract:
This invention provides a dynamic interconnection system which allows to couple a pair o foptical beams carrying modulation information. In accordance with this invention, two optical beams emanate from transceivers at two different locations. Each beam may not see the other beam point of origin (non-line-of-sight link), but both beams can see a third platform that contains the system of the present invention. Each beam incident on the interconnection system is directed into the reverse direction of the other, so that each transceiver will detect the beam which emanated from the other transceiver. The system dynamically compensates for propagation distortions preferably using closed-loop optical devices, while preserving the information encoded on each beam.