Abstract:
A multi-radio meshed node is provided which includes a first radio module, a second radio module, and a single routing manager module that is common to or shared by the first radio module and the second radio module. The multi-radio meshed node has a node MAC address associated therewith which uniquely identifies the multi-radio meshed node. The first radio module includes a first interface. The second radio module is designed to communicate simultaneously when the first radio module is communicating. The second radio module includes a second interface. The first radio module has a first interface MAC address associated therewith, and the second radio module has a second interface MAC address associated therewith. The single routing manager module determines which one of the first interface and the second interface is to be used for routing of a particular packet.
Abstract:
Techniques for deriving message counts based at least in part on a locally stored message count and at least a portion of a message count received from a remote network node are disclosed. The message counts can relate to downlink (DL) non-access stratum (NAS) counts. In one aspect, a device can receive a number of least significant bits of the DL NAS count in a handover message. The device can derive a DL NAS count by utilizing a remaining portion of most significant bits of a locally stored DL NAS count, and can determine whether to increment or decrement the most significant bits based at least in part on a parameter to handle cases where the least significant bits of the locally stored DL NAS count have wrapped due to overflow and/or underflow.
Abstract:
A communication system that employs Wireless Wide Area Networks (WWAN) of different Radio Access Technologies (RATs) ensures that simultaneous handover to 1xRTT and 1xEVDO is attempted only when warranted. The User Equipment (UE) that has multiple transceivers and is actively involved in a packet data session can be transferred from LTE to 1xEVDO. A criterion (e.g., cost, subscriber preference, operator preference, or network data traffic) can be used to determine when it is warranted to incur the setup delay time to perform simultaneous handover of both a voice connection and a packet data session. Conversely, if there is no active data session, generally the UE can be handed over only to 1xRTT for the voice/Short Message Service (SMS) call. In an aspect, the criterion can still dictate setting up simultaneously even for an active packet data session, such as for maintaining a time critical function of the device.
Abstract:
In accordance with aspects of the disclosure, a method, apparatus, and computer program product are provided for wireless communication. The method, apparatus, and computer program product may be configured to determine that a device is switching from a first cell and a first location to a second cell and a second location to implement a mobile terminated circuit switched fallback process, generate a routing area update message including a flag indicating a pending data packet for communication, and transmit the generated routing area update message.
Abstract:
Systems and methodologies are described herein that facilitate efficient transfer of quality of service (QoS) context during inter-radio access technology (RAT) handovers. In particular, techniques are described herein for establishing rules for whether a user equipment unit (UE) or an associated network should establish QoS for a mixed-mode application, identifying flow to bearer mappings when translating QoS across an inter-RAT handover, mapping QoS parameters of respective RATs, mitigating QoS depreciation upon multiple handovers, performing one or more actions if QoS is not acceptable in a new RAT, maintaining QoS during tunnel mode, and handling scenarios in which a UE moves between a RAT using network-initiated QoS and a RAT using UE-initiated QoS.
Abstract:
Systems and methodologies are described herein that facilitate efficient transfer of quality of service (QoS) context during inter-radio access technology (RAT) handovers. In particular, techniques are described herein for establishing rules for whether a user equipment unit (UE) or an associated network should establish QoS for a mixed-mode application, identifying flow to bearer mappings when translating QoS across an inter-RAT handover, mapping QoS parameters of respective RATs, mitigating QoS depreciation upon multiple handovers, performing one or more actions if QoS is not acceptable in a new RAT, maintaining QoS during tunnel mode, and handling scenarios in which a UE moves between a RAT using network-initiated QoS and a RAT using UE-initiated QoS.
Abstract:
Techniques for reading and caching system information of non-serving systems in order to shorten call setup delay are described. A user equipment (UE) may communicate with a serving system, e.g., in an idle mode or a connected mode. The UE may periodically read system information of at least one non-serving system, e.g., as a background task. The UE may cache (i.e., store) the system information of the at least one non-serving system at the UE. The UE may thereafter access a particular non-serving system among the at least one non-serving system based on access parameters in the cached system information. By caching the system information, the UE can avoid reading the system information of the particular non-serving system at the time of system access, which may then reduce call setup delay.
Abstract:
Multi-mode system selection (MMSS) enables a mobile station (MS) to prioritize MS preference for selecting particular radio air-interfaces (AI) across multiple standards (e.g., 3GPP, 3GPP2, WiMAX). 3GPP2 is developing a scheme MMSS-3GPP2 which is usually referred to as simply 'MMSS.' Other schemes exist e.g., proprietary ones (e.g., internal ePRL), an MMSS-3GPP based on the PLMN with Access Technologies of non-3GPP systems. MMSS OTASP messages and parameters are being defined in 3GPP2 to allow the carriers to provision MMSS parameters to the mobile device. With MMSS, the mobile can select and hence acquire cdma2000 and non-cdma2000 systems (e.g., LTE, WiMAX) based on carrier's preferences.
Abstract:
A unified approach multi-mode system selection is provided for a mobile device implementing multiple multi-mode system selection (MMSS). Different system operators may provide their own MMSS databases and rules in different frameworks. To allow a mobile device to perform MMSS without modifying its software, the different databases may be mapped into a common database. In one example, an MMSS solution is implemented that uses a Preferred Roaming List (PRL) database according to a 3GPP2 system selection to specify the prioritization of 3GPP and 3GPP2 systems the mobile device. When the mobile device is powered up, the information in the different MMSS databases is mapped into a common database ("PRL with PLMN records"). The wireless communication device then acts on this information in the common database to perform system selection.
Abstract:
Systems and methodologies are described that facilitate avoidance of duplicative resource allocation and/or erroneous service charges via unambiguously indicating an entity responsible for quality of service (QoS) initiation. In one example, an indication is provided to a mobile device to indicate a preference for network-initiated QoS or a preference for device -initiated QoS. QoS for a data flow can be established in accordance with the indication. For instance, the mobile device initiates QoS when the indication specifies a preference for device-initiated QoS while a network establishes QoS when the indication specifies a preference for network-initiated QoS.