Abstract:
An apparatus includes a remote optically pumped amplifier (ROPA). The ROPA includes a bypass filter configured to receive an optical signal and first pump power and to separate the optical signal and the first pump power. The ROPA also includes an amplifier configured to receive the optical signal from the bypass filter and to amplify the optical signal. The ROPA further includes an optical combiner/multiplexer configured to receive the first pump power from the bypass filter, receive at least second and third pump powers, combine at least two of the first, second and third pump powers, and provide different pump powers or combinations of pump powers to different locations within the ROPA to feed the amplifier.
Abstract:
A repeater amplifier assembly that includes at least two chassis containing optics and electronics. The chassis are connected with a size-adjustment mechanism that can adjust a size of the repeater amplifier assembly by reversibly adjusting the positions of the chassis with respect to each other. To insert the repeater amplifier assembly into a repeater housing, the repeater amplifier assembly is accessed in a contracted position. The amplifier is inserted into the housing, and then a control of the size adjustment mechanism is actuated to urge the chassis outwards until the chassis push against the repeater housing. To remove the repeater amplifier assembly from the repeater housing, the control is actuated to cause the size adjustment mechanism to pull the chassis inwards with respect to each other until the chassis no longer push against the repeater housing. The repeater amplifier assembly may then be freely removed from the repeater housing.
Abstract:
A multi-stage Raman amplifier includes a first Raman amplifier stage having a first sloped gain profile operable to amplify a plurality of signal wavelengths, and a second Raman amplifier stage having a second sloped gain profile operable to amplify at least most of the plurality of signal wavelengths after those wavelengths have been amplified by the first stage. The second sloped gain profile is approximately complementary slope to the slope of the first sloped gain profile. The combined effect of the first and second Raman stages contributes to an approximately flat overall gain profile over the plurality of signal wavelengths.
Abstract:
An apparatus includes a remote optically pumped amplifier (ROPA). The ROPA includes a bypass filter configured to receive an optical signal and first pump power and to separate the optical signal and the first pump power. The ROPA also includes an amplifier configured to receive the optical signal from the bypass filter and to amplify the optical signal. The ROPA further includes an optical combiner/multiplexer configured to receive the first pump power from the bypass filter, receive at least second and third pump powers, combine at least two of the first, second and third pump powers, and provide different pump powers or combinations of pump powers to different locations within the ROPA to feed the amplifier.
Abstract:
A repeater amplifier assembly that includes at least two chassis containing optics and electronics. The chassis are connected with a size-adjustment mechanism that can adjust a size of the repeater amplifier assembly by reversibly adjusting the positions of the chassis with respect to each other. To insert the repeater amplifier assembly into a repeater housing, the repeater amplifier assembly is accessed in a contracted position. The amplifier is inserted into the housing, and then a control of the size adjustment mechanism is actuated to urge the chassis outwards until the chassis push against the repeater housing. To remove the repeater amplifier assembly from the repeater housing, the control is actuated to cause the size adjustment mechanism to pull the chassis inwards with respect to each other until the chassis no longer push against the repeater housing. The repeater amplifier assembly may then be freely removed from the repeater housing.
Abstract:
Network management of a telecommunications network. An external system, such as a cloud computing environment, receives network element data from the network management system of the telecommunications network over a channel that may be encrypted. The network element data are parameter samples that the network management system has collected from one or more network elements within the telecommunications network. The external system then processes at least some of the received network element data. The external system might also receive network element data from other network management systems of other telecommunications networks also. Furthermore, the external system might also have external information not received from the network management system. The external system may perform processing on all of this information in conjunction with the received network element data in order to perform sophisticated analytics.
Abstract:
The adjustment of tilt in an optical signal path of a repeater. The repeater includes an optical pump that optically powers a rare-Earth doped fiber amplifier, which amplifies the optical signal. The optical signal path also includes Raman gain stage implemented in a previous optical fiber span in the optical signal path, and which contributes tilt with respect to wavelength. Adjusting the Raman gain and/or the rare-Earth doped gain also adjusts the combined tilt contributed by these gain stages. However, the rare-Earth doped gain operates at least partially in the saturated regime, thereby stabilizing the gain at the output of the rare-Earth doped amplifier. Thus tilt control may be employed by adjusting optical pump power with reduced effect on overall gain.
Abstract:
This invention describes new developments in Sagnac Raman amplifiers and cascade lasers to improve their performance. The Raman amplifier bandwidth is broadened by using a broadband pump or by combining a cladding-pumped fiber laser with the Sagnac Raman cavity. The broader bandwidth is also obtained by eliminating the need for polarization controllers in the Sagnac cavity by using an all polarization maintaining configuration, or at least using loop mirrors that maintain polarization. The polarization maintaining cavities have the added benefit of being environmentally stable and appropriate for turn-key operation. The noise arising from sources such as double Rayleigh scattering is reduced by using the Sagnac cavity in combination with a polarization diversity pumping scheme, where the pump is split along two axes of the fiber. This also leads to gain for the signal that is independent of the signal polarization. Finally, a two-wavelength amplifier for 1310 nm and 1550 nm can be implemented by using a parallel combination of Raman amplifiers with shared pump lasers or by combining Raman amplifiers with erbium-doped fiber amplifiers. Combinations of the above improvements can be used advantageously to meet specifications for broad bandwidth, polarization independence, noise performance and multi-wavelength operation.
Abstract:
An optical communication link that includes two nodes interconnected by an optical channel that comprises optical fiber(s), and that is used to communicate an optical signal comprising multiple optical signal wavelengths. The first node provides an optical signal onto the optical channel towards the second node, or receives an optical signal from the optical channel from the second node. A Raman pump provides Raman pump power into the optical fiber of the optical channel to thereby perform Raman amplification of the optical signal in the optical fiber. The second node determines a quality measurement of at least of optical wavelength signals transmitted by the first node to the second node. The second node also transmits information from the quality measurement back to the first node. A controller at the first node controls at least one parameter of the Raman pump in response to this transmitted information.
Abstract:
A submarine optical repeater includes a submarine amplifier module, which further includes a pumping laser module and an optical detector module. The pumping laser module generates optical amplifications within an optical cable, and, in the case of a fault in the optical cable, the optical detector module detects at least one characteristic of an optical signal caused by the fault in the optical cable. This configuration then identifies a particular signal characteristic that indicates a fault within the optical cable.