Abstract:
A method for terminating a fiber optic cable includes removing an end portion of an outer jacket of a fiber optic cable to expose a strength member and at least one optical fiber. A binder material of the strength member of the fiber optic cable is heated using a heat source to expose strength elements of the strength member. The strength elements are secured to a fiber optic connector assembly using an adhesive.
Abstract:
A fiber optic connector and cable assembly is disclosed herein. The fiber optic connector and cable assembly includes a cable having at least one optical fiber, a jacket surrounding the optical fiber and at least one strength member for reinforcing the fiber optic cable. The fiber optic connector and cable assembly also includes a fiber optic connector having a main connector body having a distal end and a proximal end. The fiber optic connector also includes a ferrule supporting an end portion of the optical fiber. The ferrule is mounted at the distal end of the main connector body. The fiber optic connector further includes a spring for biasing the ferrule in a distal direction and a spring push for retaining the spring within the main connector body. The spring push is mounted at the proximal end of the main connector body. The spring push includes a main body and a stub that projects proximally outwardly from the main body. A crimp band is provided for securing the fiber optic cable to the fiber optic connector. The crimp band includes a first portion crimped down on the stub. The strength member is secured between the first portion of the crimp band and the stub. The crimp band also includes a second portion crimped down on the jacket of the fiber optic cable. The crimp band further includes an inner surface having gripping structures for gripping the strength member and/or the jacket.
Abstract:
A terminal for mounting to a fiber distribution cable includes a housing having a base and a cover. The cover is connectedly engaged with the base. The terminal further includes a plurality of adapters disposed on the cover. A fiber routing tray having a top panel and a bottom panel is disposed in an interior cavity. The fiber routing tray includes a storage space defined between the top and bottom panels for storing a length of optical fiber. A method for installing a terminal includes providing a terminal having a housing defining an interior cavity. A cable is pulled from the interior cavity of the housing. The cable is spliced to a fiber distribution cable with a splice. The cable is inserted back into the interior cavity. A spliced end of the cable, a spliced end of the fiber distribution cable and the splice are inserted in a retention device.
Abstract:
A mid- span breakout arrangement includes a distribution cable (220) and a tether cable (242). The distribution cable (220) has a breakout access location (241). The tether cable (242) is secured to the distribution cable (220) adjacent the breakout access location (241). The breakout further includes at least one length of optical fiber (224) helically wrapped around the distribution cable (220) along the breakout access location (241). The length of optical fiber (224) is coupled to the distribution cable (220) and to the tether cable (242).
Abstract:
A mid-span breakout arrangement includes a distribution cable (220) and a tether cable (242). The distribution cable (220) has a breakout access location (241). The tether cable (242) is secured to the distribution cable (220) adjacent the breakout access location (241). The breakout further includes at least one length of optical fiber (224) helically wrapped around the distribution (cable 220) along the breakout access location (242). The length of optical fiber (224) is coupled to the distribution cable (220) and to the tether cable (242).
Abstract:
A terminal for mounting to a fiber distribution cable includes a housing having a base and a cover. The cover is connectedly engaged with the base. The terminal further includes a plurality of adapters disposed on the cover. A fiber routing tray having a top panel and a bottom panel is disposed in an interior cavity. The fiber routing tray includes a storage space defined between the top and bottom panels for storing a length of optical fiber. A method for installing a terminal includes providing a terminal having a housing defining an interior cavity. A cable is pulled from the interior cavity of the housing. The cable is spliced to a fiber distribution cable with a splice. The cable is inserted back into the interior cavity. A spliced end of the cable, a spliced end of the fiber distribution cable and the splice are inserted in a retention device.
Abstract:
To optically couple a tether to a ribbonized distribution cable, a cut is made in the distribution cable, exposing the ribbons inside. The correct ribbon is located and spliced to a tether. A splice protection sleeve is applied to the splice and placed into the existing cut on the cable so as to be recessed within an outer boundary of the cable jacket. The buffer tube from the tether cable is also guided toward the cut and fixed in place. A breakout assembly is installed on the distribution cable to secure the tether to the distribution cable.
Abstract:
The present disclosure relates to a telecommunications cable including a distribution cable (220) and a tether (242) that branches from the distribution cable (220) at a mid-span breakout location (241). A flexible closure covers the mid-span breakout location (241). Within the closure, fibers are broken out from the distribution cable (220) and spliced to fibers of the tether (242). The lengths of broken out fibers within the flexible closure are provided with sufficient excess fiber length to allow the closure to be readily bent/flexed in any direction without damaging the fibers.
Abstract:
A fiber optic and electrical connection system includes a fiber optic cable, a ruggedized fiber optic connector, a ruggedized fiber optic adapter, and a fiber optic enclosure. The cable includes one or more electrically conducting strength members. The connector, the adapter, and the enclosure each have one or more electrical conductors. The cable is terminated by the connector with the conductors of the connector in electrical communication with the strength members. The conductors of the connector electrically contact the conductors of the adapter when the connector and the adapter are mechanically connected. And, the conductors of the adapter electrically contact the conductors of the enclosure when the adapter is mounted on the enclosure.
Abstract:
A telecommunications cable including a main cable having a central buffer tube enclosed within a cable jacket and a ribbon stack positioned within the buffer tube. The main cable includes a cut region where a slot has been cut through the cable jacket and the buffer tube to provide access to the ribbon stack during manufacture of the telecommunication cable. A tether branches from the main cable at the cut region. The tether includes an optical fiber that is optically coupled to an optical fiber of the ribbon stack.