Abstract:
Isolated polypeptide sequence having the sequence of SEQ ID NO:1 or muteins thereof having the ability to bind cAMP and repress the expression of the aceB gene of C. glutamicum and which can be obtained from SEQ ID NO:1 by inserting, deleting or substituting up to 20% of the amino acids.
Abstract translation:具有SEQ ID NO:1的序列的分离的多肽序列或其突变蛋白具有结合cAMP的能力并抑制谷氨酸棒杆菌的aceB基因的表达,并且可以通过插入,缺失或替代从SEQ ID NO:1获得 高达20%的氨基酸。
Abstract:
The present invention features improved processes and organisms for the production of methionine. The invention demonstrates that a ?metF organism or a ?metE AmetH organism, for example, mutants of C. glutamicum or E. coli, can use a methyl capped sulfide source, e.g., dimethyl disulfide (DMDS), as a source of both sulfur and a methyl group, bypassing the need for MetH/Met? and MetF activity and the need to reduce sulfate, for the synthesis of methionine. Also described in this patent are data implicating MetY (also called MetZ) as an enzyme that incorporates a methyl capped sulfide source, e.g., DMDS, into methionine. A ?metF ?metB strain of C. glutamicum can use a methyl capped sulfide source, e.g., DMDS, as a source of both sulfide and a methyl group. Furthermore, methionine production by engineered prototrophic organisms that overproduce O-acetyl-homoserine was improved by the addition of a methyl capped sulfide source, e.g., DMDS.
Abstract:
The present invention concerns methods for the production of microorganisms with increased efficiency for methionine synthesis. The present invention also concerns microorganisms with increased efficiency for methionine synthesis. Furthermore, the present invention concerns methods for determining the optimal metabolic flux for organisms with respect to methionine synthesis.
Abstract:
The invention relates to methods for the zymotic production of fine chemicals, especially L-methionine, containing sulphur using bacteria, wherein a nucleotide sequence coding for a methionine-synthase (metY)-gene is expressed.
Abstract:
The invention relates to the use of nucleic acid sequences for regulating gene transcription and expression, said novel promoters and expression units, methods for modifying or inducing the gene transcription rate and/or expression rate, expression cassettes containing said expression units, genetically modified microorganisms having a modified or induced transcription rate and/or expression rate, and methods for producing biosynthetic products by cultivating said genetically modified microorganisms.
Abstract:
The present invention features methods of increasing the production of a fine chemical, e.g., lysine from a microorganism, e.g., Corynebacterium by way of deregulating an enzyme encoding gene, i.e., fructose- l,6-bisphosphatase. In a preferred embodiment, the invention provides methods of increasing the production of lysine in Corynebacterium glutamicum by way of increasing the expression of fructose-1,6-bisphosphatase activity. The invention also provides a novel process for the production of lysine by way of regulating carbon flux towards oxaloacetate (OAA). In a preferred embodiment, the invention provides methods for the production of lysine by way of utilizing fructose or sucrose as a carbon source.
Abstract:
The invention relates to methods for the zymotic production of fine chemicals, especially L-methionine, containing sulphur using bacteria, wherein a nucleotide sequence coding for a methionine-synthase (methA)-gene is expressed.
Abstract:
The invention relates to methods for the production by fermentation of sulphur-containing fine chemicals, in particular L-methionine, using bacteria in which a nucleic acid sequence coding for a methionine synthase gene (metF) is expressed.
Abstract:
The present invention relates to microorganisms and processes for the efficient preparation of L-amino acids such as L-methionine. In particular, the present invention relates to microorganisms and processes in which the formation and/or accumulation of homolanthionine in the methionine pathway is reduced and/or prevented.