Abstract:
The invention is an improved catalyst structure and its use in highly exothermic processes like catalyst combustion. This improved catalyst structure employed integral heat exchange in an array of longitudinally disposed, adjacent reaction passage-ways or channels, which are either catalyst-coated (14) or catalyst-free (16), wherein the configuration of the catalyst-coated channels (14) differ from the non-catalyst channels (16) such that, when applied in exothermic reaction processes, such as catalyst combustion, the desired reaction is promoted in the catalytic channels (14) and substantially limited in the non-catalytic channels (16). The invention further comprises an improved reaction system and process for combustion of a fuel wherein catalytic combustion using a catalyst structure employing integral heat exchange, preferably the improved structures of the invention, affords a partially-combusted, gaseous product which is passed to a homogeneous combustion zone where complete combustion is promoted by means of a flameholder.
Abstract:
This invention is an improved catalyst structure and its use in highly exothermic processes like catalyst combustion. This improved catalyst structure employs integral heat exchange in an array of longitudinally disposed, adjacent reaction passageways or channels, which are either catalyst-coated (14) or catalyst-free (16), wherein the configuration of the catalyst-coated channels (14) differ from the non-catalyst channels (16) such that, when applied in exothermic reaction processes, such as catalyst combustion, the desired reaction is promoted in the catalytic channels (14) and substantially limited in the non-catalytic channels (16).
Abstract:
This invention is a process for detecting low levels of nitrogen oxides (NOx) in a flowing gas stream (typically an exhaust gas stream) and a catalytic NOx sensor which may be used in that process.
Abstract:
This invention is a combustion process having a series of stages in which a fuel/oxygen-gas-containing mixture (16, 18) is combusted stepwise using a series of specific catalysts and catalytic structures (figure 2) and, optionally, a final homogeneous combustion zone to produce a combusted gas at a selected temperature preferably between 1050 DEG and 1700 DEG C. Depending upon the pressure of operation, there may be two or three discrete catalytic stages (stages 1, 2 and 3). The choice of catalysts and the use of specific structures, including those employing integral heat exchange (44) results in a catalyst and its support which are stable due to their comparatively low temperature, do not deteriorate, and yet the product combustion gas is at a temperature suitable for use in a gas turbine, furnace, boiler, or the like, but has low NOx content. Neither fuel nor air is added to the combustion process except in the initial stage.
Abstract:
This invention is a process for detecting low concentration levels of sulfur oxides (SO2) in a flowing gas stream (typically a combustion exhaust gas stream) and a catalytic SO2 sensor system which may be used in that process.
Abstract:
A support structure (53) for securing a catalyst structure (52) comprising a multiplicity of longitudinally disposed channels for passage of a flowing gas mixture within a reactor, said support structure being comprised of a monolithic open celled or honeycomb-like structure formed by thin strips or ribs of high temperature resistant metal or ceramic which abuts against one end of the catalyst structure, and extends in a direction perpendicular to the longitudinal axis of the catalyst structure to essentially cover an end face (at either the inlet end or outlet end or both) of the catalyst structure with the support structure being secured (54) on its periphery to the reactor wall. The strips or ribs making up the support structure are bounded together to form a unitary structure having cellular openings at least as large as the catalyst structure channel openings. The cellular openings in the support structure are also positioned to be in fluid communication with the channels of the catalyst structure thus affording essentially unaltered gas flow (50) from the catalyst structure through the support structure.
Abstract:
A support structure for securing a catalyst structure (10) wherein a combustion reactor (1) has a plurality of hollow, internally cooled, elongated support members (11, 12) which are secured to the combustion reactor (1) and which abut the catalyst structure (10) to limit the axial movement of the catalytic structure. The support structure is in fluid communication with a cooling medium inlet (3) which maintains the support structure at a temperature at which its strength properties are retained.
Abstract:
The invention is an improved catalyst structure and its use in highly exothermic processes like catalyst combustion. This improved catalyst structure employed integral heat exchange in an array of longitudinally disposed, adjacent reaction passage-ways or channels, which are either catalyst-coated (14) or catalyst-free (16), wherein the configuration of the catalyst-coated channels (14) differ from the non-catalyst channels (16) such that, when applied in exothermic reaction processes, such as catalyst combustion, the desired reaction is promoted in the catalytic channels (14) and substantially limited in the non-catalytic channels (16). The invention further comprises an improved reaction system and process for combustion of a fuel wherein catalytic combustion using a catalyst structure employing integral heat exchange, preferably the improved structures of the invention, affords a partially-combusted, gaseous product which is passed to a homogeneous combustion zone where complete combustion is promoted by means of a flameholder.