Abstract:
A system and method to provide a diagnosis of the breast disease state of a test breast sample. A database containing a plurality of reference Raman data sets is provided where each reference Raman data set has an associated known breast sample and an associated known breast disease state. A test breast sample is irradiated with substantially monochromatic light to generate scattered photons resulting in a test Raman data set. The test Raman data set is compared to the plurality of reference Raman data sets using a chemometric technique. Based on the comparison, a diagnosis of a breast disease state of the test breast sample is provided. The breast disease state includes invasive ductal carcinoma or invasive lobular carcinoma disease state.
Abstract:
A system and method to predict the progression of disease of a test sample is provided A group of known biological samples is provided, each having an associated known outcome including a non-diseased or diseased sample. A Raman data set is obtained for each known biological sample. Each data set is analyzed to identify a diseased or non-diseased reference data set. A first database is generated which contains reference Raman data sets for all diseased samples. A second-database is generated which contains reference data sets for all non-diseased samples. A test Raman data set of a test biological sample having an unknown disease status is received. A diagnostic is provided as to whether the test sample is non-diseased or diseased The diagnostic is obtained by comparing the test data set against the reference data sets in the databases using a chemometric technique to predict the progression of disease.
Abstract:
A method and system to differentiate a tissue margins during various medical procedures. A region containing a biological tissue is irradiated, with a substantially monochromatic light. Raman spectroscopic data is obtained from the irradiated region. A boundary between a neoplastic portion and a non-neoplastic portion, in the region containing the biological tissue, is differentiated by evaluating the Raman spectroscopic data for at least one Raman spectroscopic value characteristic of either the neoplastic portion or the non-neoplastic portion. The neoplastic portion is selected for physical manipulation based on the differentiation of the boundary between the neoplastic portion and the non-neoplastic portion.
Abstract:
Systems and methods designed to determine tumor histological subtypes in order to guide a surgical procedure. The systems and methods illuminate biological tissue in order to generate a plurality of interacted photons, collect the interacted photons, detect the plurality of a interacted photons to generate at least one hyperspectral image, and analyze a hyperspectral image by extracting a spectrum from a location in the hyperspectral image. The location should correspond to an area that is of interest in the biological tissue.
Abstract:
A system and method for analyzing biological samples, such as dried human blood serum, to determine a disease state such as colorectal cancer (CRC). Using dried samples may hold potential for enhancing localized concentration and/or segmentation of sample components. The method may comprise illuminating at least one location of a biological sample to generate a plurality of interacted photons, collecting the interacted photons and generating at least one Raman data set representative of the biological sample. A system may comprise an illumination source to illuminate at least one location of a biological sample and generate at least one plurality of interacted photons, at least one mirror for directing the interacted photons to a detector. The detector may be configured to generate at least one Raman data set representative of the biological sample. The system and method may utilize a FAST device for multipoint analysis or may be configured to analyze a sample using a line scanning configuration.
Abstract:
A method and system of differentially manipulating cells where the cells, suspended in a fluid, are irradiated with substantially monochromatic light. A Raman data set is obtained from the irradiated cells and where the data set is characteristic of a disease status. The data set is assessed to identify diseased cells. A Raman chemical image of the irradiated cells is also obtained. Based on the assessment and the Raman chemical image, the fluid in which the cells are suspended is differentially manipulated. The diseased cells are directed to a first location and other non-diseased cells are directed to a second location as part of the differential manipulation. The diseased cells may be treated with a physical stress, a chemical stress, and a iological stress and then returned to a patient from whom the diseased cells were obtained prior to the irradiation.
Abstract:
Methods for improved tissue perfusion monitoring are disclosed. A method includes collecting hyperspectral image data from an image sensor positioned to collect interacted photons from a tissue region resulting from illumination of the tissue sample at a plurality of wavelengths in the visible, near infrared, or shortwave infrared regions. Hypercubes are generated based on the collected hyperspectral image data. The hypercubes are analyzed to identify one or more of the plurality of wavelengths resulting in contrast in the hyperspectral images. One or more regions in the tissue region with altered perfusion states are identified based on the contrast in the hyperspectral images. A tissue perfusion monitoring computing device and non-transitory medium are also disclosed.
Abstract:
Methods and systems of identifying oral cancer in vivo are disclosed. An oral cavity of a patient is illuminated with a plurality of illuminating photons. A plurality of interacted photos are received from the oral cavity. The interacted photons may have been absorbed, reflected, scattered or emitted by the oral cavity. The interacted photons are filtered into first and second polarized multi-passband wavelengths using first and second tunable conformal filters, respectively. A detector captures the first and second polarized multi-passband wavelengths. A processor automatically discriminates between cancerous tissue and non-cancerous tissue in an image resolved from the first and second polarized multi-passband wavelengths.
Abstract:
Systems and methods for the detection of calculi in the biliary system are disclosed. The systems include an illumination source, one or more filters that filter a first set of illumination photons and a second set of illumination photons, as well as associated processors and detectors. The system is also designed to generates image data sets and generated information related to the location of the calculi.
Abstract:
A method to diagnosis disease states of unknown samples is provided wherein a test Raman date set for unknown samples is generated A reference Raman database is also provided where the database contains a plurality of reference Raman data sets and a plurality of reference Raman difference data sets The reference Raman difference data set is generated by determining a difference between a first reference Raman data set and a second reference Raman data set First and second reference Raman data sets are associated with first and second known samples and associated with one or more of first and second known disease states and first and second known clinical outcomes A diagnosis is provided of whether the unknown sample has first or second disease states by comparing the test Raman data set to said plurality of reference Raman difference data sets in the reference Raman database using a chemometπc technique