Abstract:
A dual-aperture zoom digital camera operable in both still and video modes. The camera includes Wide and Tele imaging sections with respective lens/sensor combinations and image signal processors and a camera controller operative!y coupled to the Wide and Tele imaging sections. The Wide and Tele imaging sections provide respective image data. The controller is configured to combine in still mode at least some of the Wide and Tele image data to provide a fused output image from a particular point of view, and to provide without fusion continuous zoom video mode output images, each output image having a given output resolution, wherein the video mode output images are provided with a smooth transition when switching between a lower zoom factor (ZF) value and a higher ZF value or vice versa, and wherein at the lower ZF the output resolution is determined by the Wide sensor while at the higher ZF value the output resolution is determined by the Tele sensor.
Abstract:
Methods for stereo calibration of a dual-camera that includes a first camera and a second camera and system for performing such methods. In some embodiments, a method comprises obtaining optimized extrinsic and intrinsic parameters using initial intrinsic parameters and, optionally, initial extrinsic parameters of the cameras, estimating an infinity offset e using the optimized extrinsic and extrinsic parameters, and estimating a scaling factor s using the optimized extrinsic and extrinsic parameters and infinity offset parameter e, wherein the optimized extrinsic and extrinsic parameters, infinity offset e and scaling factor s are used together to provide stereo calibration that leads to improved depth estimation.
Abstract:
Methods that provide a smooth transition in switching a dual-camera output from an output of a first sub-camera to an output of a second sub-camera comprise forming at least one composite image based on a weighted combination of a first sub-camera image and a second sub-camera image, switching the dual-camera output from an image based on the first sub-camera image to an image based on the at least one composite image, and further switching the dual-camera output from the image based on the at least one composite image to an image based on the second sub-camera image.
Abstract:
A dual-aperture zoom digital camera operable in both still and video modes. The camera includes Wide and Tele imaging sections with respective lens/sensor combinations and image signal processors and a camera controller operatively coupled to the Wide and Tele imaging sections. The Wide and Tele imaging sections provide respective image data. The controller is configured to output, in a zoom-in operation between a lower zoom factor (ZF) value and a higher ZF value, a zoom video output image that includes only Wide image data or only Tele image data, depending on whether a no-switching criterion is fulfilled or not.
Abstract:
Dual-aperture digital cameras with auto-focus (AF) and related methods for obtaining a focused and, optionally optically stabilized color image of an object or scene. A dual- aperture camera includes a first sub-camera having a first optics bloc and a color image sensor for providing a color image, a second sub-camera having a second optics bloc and a clear image sensor for providing a luminance image, the first and second sub-cameras having substantially the same field of view, an AF mechanism coupled mechanically at least to the first optics bloc, and a camera controller coupled to the AF mechanism and to the two image sensors and configured to control the AF mechanism, to calculate a scaling difference and a sharpness difference between the color and luminance images, the scaling and sharpness differences being due to the AF mechanism, and to process the color and luminance images into a fused color image using the calculated differences.
Abstract:
Systems and methods for obtaining a seamless, high resolution, large field of view image comprise capturing a plurality of Tele images in a scene using a scanning Tele camera, each captured Tele image having an associated Tele field of view FOVT, retrieving a R image having a respective R image scene with a field of view greater than FOVT, analyzing the R image for defining an order of scanning positions according to which the folded Tele camera scans a scene to capture the plurality of Tele images, aligning the plurality of Tele images and the R image to obtain aligned Tele images, and composing the aligned Tele images into an output image. The output image may include at least parts of the R image and may be one of a stream of output images.
Abstract:
Multi-aperture zoom digital cameras comprising first and second scanning cameras having respective first and second native fields of view (FOV) and operative to scan a scene in respective substantially parallel first and second planes over solid angles larger than the respective native FOV, wherein the first and second cameras have respective centers that lie on an axis that is perpendicular to the first and second planes and are separated by a distance B from each other, and a camera controller operatively coupled to the first and second scanning cameras and configured to control the scanning of each camera.
Abstract:
Systems, imaging devices and methods for creating background blur in camera panning or motion. Using an imaging device with an image sensor, a method may comprise selecting an object to be tracked in a scene, recording an image or an image stream, and aligning the selected object optically and/or digitally to a same position on the image sensor while the selected object moves relative to the imaging device or relative to the scene, thereby creating a blurred image background and/or foreground relative to the selected object and a sense of panning or motion.
Abstract:
Multi-cameras in which two sub-cameras share a camera aperture. In some embodiments, a multi-camera comprises a first sub-camera including a first lens and a first image sensor, the first lens having a first optical axis, a second sub-camera including a second lens and a second image sensor, the second lens having a second optical axis, and an optical element that receives light arriving along a third optical axis into the single camera aperture and splits the light for transmission along the first and second optical axes.
Abstract:
A dual-aperture camera comprising a first camera having a first sensor and a first image signal processor (ISP), the first camera operative to output a first stream of frames, a second camera having a second sensor and a second ISP, the second camera operative to output a second stream of frames, and a synchronization and operation control module configurable to control operation of one camera in a fully operational mode and operation of the other camera in a partially operational mode and to output an output of the fully operational camera as a dual-aperture camera output, whereby the partially operational mode of the other camera reduces a dual-aperture camera the power consumption in comparison with a full operational mode of the other camera.