Abstract:
The present invention provides a bicomponent fiber having increased surface roughness. The fiber includes a first polymer and a composite, wherein the composite forms a layer which forms at least a portion of the fiber's surface. The composite is formed by a second polymer and a filler, where an average particle size of the filler is greater than a thickness of the layer formed by the composite. The fibers can have a round, oval, trilobal, triangular, dog-boned, flat or hollow shape and a symmetrical or asymmetrical sheath/core or side-by-side configuration. When the fiber has a sheath/core configuration, the composite can form the sheath, and the average particle size of the filler is greater than the thickness of the sheath.
Abstract:
A fiber is obtainable from or comprises a propylene/α-olefin interpolymer characterized by an elastic recovery, Re, in percent at 300 percent strain and 1 cycle and a density, d, in grams/cubic centimeter, wherein the elastic recovery and the density satisfy the following relationship: Re >1481-1629(d). Such interpolymer can also be characterized by other properties. The fibers made therefrom have a relatively high elastic recovery and a relatively low coefficient of friction. The fibers can be cross-linked, if desired. Woven or non- woven fabrics can be made from such fibers.
Abstract:
The present invention relates to nonwoven webs or fabrics. In particular, the present invention relates to nonwoven webs having superior abrasion resistance and excellent softness characteristics. The nonwoven materials comprise fibers made from of a polymer blend of isotactic polypropylene and reactor grade propylene based elastomers or plastomers together with from 100 to 2500 ppm (by weight of the fiber) of a slip agent. The isotactic polypropylene can be homopolymer polypropylene, and/or random copolymers of propylene and one or more alpha-olefins. The reactor grade propylene based elastomers or plastomers have a molecular weight distribution of less than about 3.5, and a heat of fusion less than about 90 joules/gm. In particular, the reactor grade propylene based elastomers or plastomers contains from 3 to 15 percent by weight of units derived from an ethylene and a melt flow rate of from 2 to 200 grams/ 10 minutes. Erucamide is the preferred slip additive.
Abstract:
A fiber is obtainable from or comprises an ethylene/α-olefm interpolymer characterized by an elastic recovery, Re, in percent at 300 percent strain and (1) cycle and a density, d, in grams/cubic centimeter, wherein the elastic recovery and the density satisfy the following relationship: Re >1481-1629(d). Such interpolymer can also be characterized by other properties. The fibers made therefrom have a relatively high elastic recovery and a relatively low coefficient of friction. The fibers can be cross-linked, if desired. Woven or non-woven fabrics can be made from such fibers.
Abstract:
Improved cone dyed yarns have now been discovered which have a balanced combination of desirable properties including less broken fibers and substantially uniform color. These cone dyed yarns comprise one or more elastic fibers and hard fibers, wherein the elastic fibers comprise the reaction product of at least one ethylene olefin block polymer and at least one crosslinking agent.
Abstract:
A fiber is obtainable from or comprises a blend of a propylene based polymer and an ethylene/α-olefin interpolymer characterized by an elastic recovery, Re, in percent at 300 percent strain and 1 cycle and a density, d, in grams/cubic centimeter, wherein the elastic recovery and the density satisfy the following relationship: Re >1481-1629(d). Such interpolymer can also be characterized by other properties. The fibers made therefrom have a relatively high elastic recovery and a relatively low coefficient of friction. The fibers can be cross-linked, if desired. Woven, knitted or non-woven fabrics can be made from such fibers.
Abstract:
The invention is an article comprising at least two layers, a low crystallinity layer and a high crystallinity layer. One or both layers is capable of being elongated so that a pre- stretched article is capable of being formed.
Abstract:
The present invention relates to propylene-based nonwoven layers made by the meltblown process, and laminates incorporating such layers. The meltblown layers of the present invention comprise propylene copolymers characterized by having less than 50 percent crystallinity. The meltblown layers of the present invention show an improved combination of extensibility and tensile strength. The laminate structures of the present invention are characterized by a combination of low bending modulus with high peel strength.
Abstract:
This invention relates to polyolefin compositions. In particular, the invention pertains to elastic polymer compositions that can be more easily processed on cast film lines, extrusion lamination or coating lines due to improved resistance to draw resonance. The compositions of the present invention preferably comprise an elastomeric polyolefin resin and a high pressure low density type resin.
Abstract:
Described herein are composite compositions and methods for making such compositions. The composition includes or is the reaction product of a cellulosic material, an organic component, and a thermoplastic. Some useful organic components include a silane-containing polymer. Some of the compositions have improved physical properties such as tensile properties, improved strength, and reduced water absorption.