Abstract:
An H-bridge control circuit comprises an input stage, comparator stage, inverter stage. The operation of the H-bridge can be controlled by a single analog input signal provided by a feedback stage. Shoot-through protection is provided for the H-bridge circuit through the inclusion of a dead gap determined by inputs to the comparator stage. The dead gap can be adjusted, allowing for adjustment of the precision operation of the load. The H-bridge can be used to drive a bi-directional load such as, for example, a Peltier conditioner.
Abstract:
An optical detection sensor detects presence or absence of a product within a fluid delivery medium. An emitter directs radiation into the fluid delivery medium. Each of a plurality of detectors detects light within an associated one of a plurality of wavelength ranges transmitted through the fluid delivery medium. The output of each detector is further associated with at least one out-of-product threshold. A controller may further combine detector outputs, such as by multiplication, summation, or other mathematical operation, to produce additional measures of product presence or absence. Each combination output is also associated with at least one out-of-product threshold. The controller compares the output of each detector with the associated out-of-product threshold(s) and compares each combination output with the associated out-of-product threshold(s) to determine presence or absence of product within the fluid delivery medium. The sensor is able to determine presence or absence of a variety of products having different color, transparency or turbidity.
Abstract:
A multichannel fluorosensor includes an optical module and an electronic module combined in a watertight housing with an underwater connector. The fluorosensor has an integral calibrator for periodical sensitivity validation of the fluorosensor. The optical module has one or several excitation channels and one or several emission channels that use a mutual focusing system. To increase efficiency, the excitation and emission channels each have a micro-collimator made with one or more ball lenses. Each excitation channel has a light emitting diode and an optical filter. Each emission channel has a photodiode with a preamplifier and an optical filter. The electronic module connects directly to the optical module and includes a lock-in amplifier, a power supply and a controller with an A/D converter and a connector. The calibrator provides a response proportional to the excitation intensity, and matches with spectral parameter of fluorescence for the analyzed fluorescent substance.
Abstract:
A microflow analytical system includes a laminate pump assembly connectable with one or more sources of fluid, one or more pneumatic control pumps, a mixer, and a sensor. The laminate pump assembly is adapted to deliver predetermined volumes of the fluid(s) through a plurality of flow paths which are formed within layers of the assembly. Each flow path can include an inlet valve, a pump valve, and an outlet valve each of which are controllable by the pneumatic control pumps. A series of manifolds can be formed within the layers of the pump assembly to provide for simultaneous activation of selected flow paths. Delivered fluid volumes can be mixed in the mixer which, in some embodiments, may be integral with the laminate pump assembly. The sensor can measure one or more characteristics of the mixed fluids to determine one or more properties of the fluids.
Abstract:
Embodiments of the invention provide devices and methods for measuring fluid volume. Devices according to some embodiments include a chamber, having a pair of gears rotatably mounted therewithin. Fluid flow through the chamber causes rotation of the gears, such that each rotation and/or partial rotation results in a known volume of the fluid passing through the chamber. An optical sensor positioned outside of the chamber, can view the rotating gears through a substantially transparent chamber wall. The optical sensor can view an optical characteristic of one or both of the gears, and based upon this data, fluid volume, flow rate, and/or flow direction can be determined. Devices and methods disclosed herein can provide for improved precision in fluid flow meter measurement. In addition, the devices and methods used herein can be more durable and easier to fabricate than previously known positive displacement flow meters.
Abstract:
A multi-channel device includes up to three channels for optical testing of liquid samples. The liquid sample(s) may include surface water, drinking water, processed water or the like. The multi-channel device may include a turbidity channel and a color channel that measure turbidity and color, respectively, of a liquid sample using spectrographic analysis. The multi-channel device may also include a colorimetric channel that measures the concentration of various analytes in a liquid sample, such as free chlorine, total chlorine, copper and phosphate.
Abstract:
A multichannel fluorosensor includes an optical module and an electronic module combined in a watertight housing with an underwater connector. The fluorosensor has an integral calibrator for periodical sensitivity validation of the fluorosensor. The optical module has one or several excitation channels and one or several emission channels that use a mutual focusing system. To increase efficiency, the excitation and emission channels each have a micro-collimator made with one or more ball lenses. Each excitation channel has a light emitting diode and an optical filter. Each emission channel has a photodiode with a preamplifier and an optical filter. The electronic module connects directly to the optical module and includes a lock-in amplifier, a power supply and a controller with an A/D converter and a connector. The calibrator provides a response proportional to the excitation intensity, and matches with spectral parameter of fluorescence for the analyzed fluorescent substance.
Abstract:
Methods for initiating one or more maintenance procedures on a conveyer system employ a load cell assembly that is supported by a link of a conveyor chain of the system in order to collect tension measurements. According to preferred methods, one or more threshold values for a rate of change in tension along particular portions of a circuit, around which the chain is driven, and/or for a variation in tension profile, from one cycle to another around the circuit, are established for comparison with tension measurements that are collected and/or processed by the load cell assembly, in order to detect operating issues and initiate the appropriate maintenance procedure(s). According to some methods, plots of the rate of change of tension versus time are generated and displayed for an operator to view.
Abstract:
A UV absorption spectrometer includes a housing, a controller, and a sensor unit including an. ultraviolet light source, an analytical area in an analytical cell or in running water or gaseous medium, and an UV wavelength separator including a UV detector. An ultraviolet light in a wavelength range of 200-320 nm emits from the light source through the analytical area to the wavelength separator, and the controller transforms output signals from the UV detector into absorbance values or optical densities for two or more wavelengths in the wavelength range, calculates differences of said absorbance values or optical densities, determines a concentration of a chemical in the solution with calibration constants found for a known concentration of the chemical and said differences of said absorbance values or optical densities.
Abstract:
An acoustic sensor detects presence and/or absence of fluid in a fluid delivery medium. The acoustic sensor detects fluid absence based on the difference of the speed of sound between air and a fluid. For example, the acoustic sensor may detect fluid absence based on a phase shift between acoustic signals transmitted through the fluid delivery medium when fluid is present as compared to acoustic signals transmitted through the fluid delivery medium when fluid is absent, e.g., when air or bubbles are present in the fluid delivery medium.