Abstract:
An apparatus and method for enhancing a resolution and a wide viewing angle of a holographic system is provided, the method including determining a multiple N of a target resolution and a wide viewing angle based on a resolution of a spatial light modulator (SLM) and an angle of view of a condensing lens, generating a plurality of hogels from a target image based on the determined multiple N of the target resolution and wide viewing angle, and recording the target image on a recording medium using a condensed beam obtained from a parallel beam that loads the plurality of hogels passing through the condensing lens.
Abstract:
Provided is an apparatus and method for recording holographic element images using a spatial light modulator (SLM), the apparatus including a recording light source unit to split a source beam output from a light source into a first output beam and a second output beam and output the first output beam and the second output beam, a reference beam generator to eliminate a distortion of the first output beam, and generate a reference beam by controlling a size and a shape of the distortion-eliminated first output beam, an object beam generator to generate an object beam by eliminating a distortion of the second output beam, and an object beam converging lens system to output a signal beam by modulating an object beam using a holographic element image, split the output signal beam in a plurality of directions, and converge split signal beams to be incident to a hologram film.
Abstract:
Provided are an apparatus and a method for displaying a hologram image based on pupil tracking, wherein a hologram image display apparatus includes a location determiner to determine a location of a user using a captured image of the user and a hologram information reconstructor to reconstruct first hologram information as second hologram information optimized for the location of the user to reproduce the hologram image.
Abstract:
The present invention relates to correcting errors of multiple stream-based 3D images. The present invention comprises a 3D image synchronizing unit which synchronizes a first image and a second image consisting the 3D image; a 3D image correcting unit which detects an error block in the first image, searches a corresponding block in the second image, and corrects the error block on the basis of the block information of said corresponding block; and a compositing unit which composites the corrected first image and the second image to generate a 3D stereoscopic image. According to the present invention, bit errors occurring when transmitting multiple stream of 3D image can be corrected, providing better quality of 3D images. Also, error correction can be easily performed by using the method of the present invention without complicated calculations.
Abstract:
A image encoding method according to present disclosure may comprise encoding an image based on a region of interest (ROI) including setting a ROI group, including the region of interest, in the image; converting the image based on the ROI group; and encoding a converted image. Here, the converted image may represent an image that a position of the ROI group is moved or a copped image generated to comprise the ROI group in the image.
Abstract:
Provided are an apparatus and a method for displaying a hologram image based on pupil tracking, wherein a hologram image display apparatus includes a location determiner to determine a location of a user using a captured image of the user and a hologram information reconstructor to reconstruct first hologram information as second hologram information optimized for the location of the user to reproduce the hologram image.
Abstract:
A method and apparatus for enhancing a recording speed in digital holographic image recording is provided, the method including analyzing a target image, generating a plurality of hogels from the target image, and recording the plurality of hogels on a recording medium based on a light modulation scheme, wherein the target image includes a plurality regions, and a size of the plurality of hogels differs based on the plurality of regions of the target image.
Abstract:
An image quality increasing apparatus for a binocular three-dimensional television (3DTV) is disclosed. The image quality increasing apparatus may include an error detection unit to detect whether a reference image includes an error, a reference information correction unit to correct reference information for increasing an image quality of an additional image based on a detection result, an image quality increasing unit to increase the image quality of the additional image corresponding to the reference information, and a three-dimensional (3D) image synthesis unit to synthesize a 3D image using the quality increased additional image and the reference image.
Abstract:
A boundary information providing apparatus may include a boundary information generation unit to generate boundary information of a video, the boundary information through which a switching point between a 2D video and a 3D video is recognized, based on a switching mode between the 2D video and the 3D video, and a stream transmission unit to transmit a stream including the boundary information to a video receiving apparatus.
Abstract:
The present disclosure relates to a method and apparatus for performing enhanced center-based panoptic segmentation. A method according to an embodiment of the present disclosure may comprise: extracting a plurality of image feature maps based on an input image; extracting first image feature data through a transformer-based encoder; extracting second image feature data through a pixel decoder; selecting a query set through a query selection unit; extracting an updated query set through a transformer-based decoder; and generating a predicted class and a predicted segmented image. In this regard, A selection operation may be performed on predicted classes and predicted segment images for at least one query on the object.