Abstract:
A wireless communications system for a downhole drilling operation comprises a drill string, surface communications equipment, and a downhole telemetry tool. The surface communications equipment comprises a surface EM communications module with an EM downlink transmitter configured to transmit through at least a portion of the drill string an EM downlink transmission at a frequency between 0.5 Hz and 180 kHz. The downhole telemetry tool is mountable to a drill string and has a downhole electromagnetic (EM) communications unit with an EM downlink receiver configured to receive the EM downlink transmission. The downhole EM communications unit can further comprise an EM uplink transmitter configured to transmit an EM uplink transmission at a frequency between 0.5 Hz and 180 kHz, in which case the surface EM communications module further comprises an EM uplink receiver configured to receive the EM uplink transmission.
Abstract:
A method for regulating an electromagnetic ("EM") telemetry signal sent from downhole to surface includes determining a value of a controlled parameter of the EM telemetry signal, comparing the value of the controlled parameter to a configuration value, and adjusting the value of the controlled parameter in a first direction towards the configuration value while monitoring a feedback parameter of the EM telemetry signal when the value of the controlled parameter and the configuration value differ. The controlled parameter is one of transmission voltage and transmission current, and the feedback parameter is the other of transmission voltage and transmission current. The value of the controlled parameter ceases to be adjusted in the first direction upon the earlier of either of the following occurring: the value of the controlled parameter substantially equals the configuration value, a value of the feedback parameter meets a feedback parameter cutoff threshold, and a product of the controlled and feedback parameters meets a power cutoff threshold.
Abstract:
The present disclosure is directed at methods, systems, and techniques for managing batteries for use in a downhole drilling application. The system includes a power bus, pairs of battery terminals for connecting to batteries, switching circuitry that connects and disconnects the batteries to the power bus, data collection circuitry that obtains battery parameters obtained during system operation, and a controller that controls the switching circuitry and receives the battery parameters. A control line connects the controller to the switching circuitry and a data line connects the controller to the data collection circuitry, with the control and data lines being distinct such that control and data signals are not multiplexed with each other.
Abstract:
A method for modulating a downhole telemetry signal uses a fluid pressure pulse generator that generates pressure pulses of multiple pulse heights in a drilling fluid. The method comprises: converting measurement data into a bitstream comprising symbols of a selected symbol set; encoding the bitstream into a pressure pulse telemetry signal using a modulation technique that includes amplitude shift keying, wherein each symbol of the selected symbol set is assigned a pressure pulse having a unique amplitude; and generating pressure pulses in the drilling fluid corresponding to the telemetry signal. Alternatively, the method can comprise a modulation technique that includes amplitude shift keying and phase shift keying and wherein each symbol of the selected symbol set is assigned a pressure pulse having a unique combination of amplitude and phase.
Abstract:
A wireless communications system for a downhole drilling operation comprises surface communications equipment and a downhole telemetry tool. The surface communications equipment comprises a surface EM communications module with an EM downlink transmitter configured to transmit an EM downlink transmission at a frequency between 0.01 Hz and 0.1 Hz. The downhole telemetry tool is mountable to a drill string and has a downhole electromagnetic (EM) communications unit with an EM downlink receiver configured to receive the EM downlink transmission. The downhole EM communications unit can further comprise an EM uplink transmitter configured to transmit an EM uplink transmission at a frequency greater than 0.5 Hz, in which case the surface EM communications module further comprises an EM uplink receiver configured to receive the EM uplink transmission. More particularly, the downhole EM uplink transmitter can be configured to transmit the EM uplink transmission at a frequency that is at least ten times higher than the EM downlink transmission frequency.
Abstract:
A fluid pressure pulse generating apparatus including a pulser assembly and a fluid pressure pulse generator and methods of using the fluid pressure pulse generating apparatus. The pulser assembly comprises a motor, a sensor for detecting rotation of the motor, a driveshaft rotationally coupled to the motor, and processing and motor control equipment communicative with the motor and the sensor. The fluid pressure pulse generator is coupled with the driveshaft. The sensor provides an indication of the amount of rotation of the motor and this information can be processed by the processing and motor control equipment to determine the position of the driveshaft and to control rotation of the driveshaft based on a predetermined rotational relationship between the driveshaft and the motor.
Abstract:
A downhole system has a plurality of telemetry systems and a control system configured to obtain information from one or more sensors and transmit that information on one or more of the plurality of telemetry systems. The configuration of a controller may be changed so as to change which information is transmitted on a given telemetry system and how the information is to be transmitted on the given telemetry system.
Abstract:
The embodiments described herein generally relate to a method and apparatus for providing a back up system of Directional and Inclination (D&I) information to be gathered and transmitted in addition to primary D&I sensors currently employed in industry. A downhole probe assembly including primary sensors, back up sensors and a controller is disclosed. The primary sensors comprise primary accelerometers and primary magnetometers configured to gather information relating to each of orthogonal axes X, Y and Z. The back up sensors comprise back up accelerometers configured to gather information relating to each of orthogonal axes X, Y and Z, the back up accelerometers being solid state accelerometers. The controller is in electrical communication with the primary sensors and the back up sensors. The controller is configured to receive and process information from the primary sensors and the back up sensors so that information from the back up accelerometers can be used when one or more of the primary accelerometers fail, which may allow drilling operations to continue despite such failure.
Abstract:
A fluid pressure pulse generator comprising a stator and rotor that can be used in measurement while drilling using mud pulse or pressure pulse telemetry is disclosed. The stator comprises a stator body with a circular opening therethrough and the rotor comprises a circular rotor body rotatably received in the circular opening of the stator body. One of the stator body or the rotor body comprises one or more than one fluid opening for flow of fluid therethrough and the other of the stator body or the rotor body comprises one or more than one full flow chamber. The rotor is rotatable between a full flow configuration whereby the full flow chamber and the fluid opening align so that fluid flows from the full flow chamber through the fluid opening, and a reduced flow configuration whereby the full flow chamber and the fluid opening are not aligned. The flow of fluid through the fluid opening in the reduced flow configuration is less than the flow of fluid through the fluid opening in the full flow configuration thereby generating a fluid pressure pulse.
Abstract:
Data is communicated from sensors at a downhole location near a drill bit to surface equipment. Communication to the surface equipment may be direct or may pass through a series of nodes. The nodes in some cases are intelligently reconfigured to achieve desired data rates, achieve power management goals, and/or compensate for failed nodes.