Abstract:
Methods and systems for the production of linear alkylbenzens are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and mixing of one or more olefins (e.g. propylene) with an aromatic. The high shear device may allow for lower reaction temperatures and pressures and may also reduce reaction time with existing catalysts.
Abstract:
Use of a high shear mechanical device incorporated into a process for the production of cumene hydroperoxide as a mixer/reactor device is capable of decreasing mass transfer limitations, thereby enhancing the cumene hydroperoxide production process. A system for the production of cumene hydroperoxide from oxidation of cumene, the system comprising a reactor and an high shear mixer the outlet of which is fluidly connected to the inlet of the reactor; the high shear mixer capable of providing a dispersion air gas bubbles within a liquid, the bubbles having an average bubble diameter of less than about 100 microns.
Abstract:
A method for removing contaminant from feedwater by forming a dispersion comprising bubbles of a treatment gas in a continuous phase comprising feedwater, wherein the bubbles have a mean diameter of less than about 5 microns and wherein the treatment gas is selected from air, oxygen, and chlorine. A method for removing contaminants from a feedwater by subjecting a fluid mixture comprising feedwater and a treatment gas to a shear rate greater than 20,000 s-1 in a high shear device to produce a dispersion of treatment gas in a continuous phase of the feedwater. A system for treating feedwater to remove contaminants therefrom is also presented, the system comprising at least one high shear mixing device comprising at least one generator comprising a rotor and a stator separated by a shear gap; and a pump configured for delivering feedwater and treatment gas to the high shear mixing device.
Abstract:
A method for producing a polyethylene or polypropylene polymer, or co-polymer thereof, comprises contacting a monomer-containing medium with polymerization catalyst particles in at least one high shear mixing device to form a nanodispersion, wherein the particles have a mean diameter less than 1 micron. The monomer is selected from the group consisting of ethylene, propylene, and combinations thereof. The method further includes subjecting the nanodispersion to polymerization conditions comprising pressure in the range of about 203 kPa to about 6080 kPa (about 2 atm to about 60 atm) and temperature in the range of about 20°C to about 230°C, whereby at least a portion of the monomer is polymerized. A system for carrying out the method is also disclosed.
Abstract:
A method for producing nitrobenzene is disclosed which comprises forming a dispersion comprising benzene-containing droplets or particles dispersed in a mixture of concentrated nitric acid and concentrated sulfuric acid, wherein said particles have a mean diameter less than one micron, and subjecting the dispersion to reaction conditions comprising a pressure in the range of about 203 kPa (2 atm) to about 6080 kPa (60 atm) and a temperature in the range of about 20°C to about 230°C, whereby at least a portion of said benzene is nitrated to form nitrobenzene. A system for carrying out the method is also disclosed.
Abstract:
A method for alkylating a hydrocarbon comprising at least one isoparaffin and at least one olefin by introducing liquid acid catalyst and the hydrocarbon into a high shear reactor, forming an emulsion comprising droplets comprising hydrocarbon in a continuous acid phase, wherein the droplets have a mean diameter of less than about 5 microns, introducing the emulsion into a vessel operating under suitable alkylation conditions whereby at least a portion of the isoparaffin is alkylated with the olefin to form alkylate, and removing a product stream comprising alkylate from the vessel. A system for carrying out the method is also disclosed.
Abstract:
Methods and systems for the synthesis of alcohol are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and solubility of olefins in water. The high shear device may allow for lower reaction temperatures and pressures and may also reduce reaction time. In an embodiment, a method of making an alcohol comprises introducing an olefin into a water stream to form a gas-liquid stream. The method further comprises flowing the gas-liquid stream through a high shear device so as to form a dispersion with gas bubbles having a mean diameter less than about 1 micron. In addition, the method comprises contacting the gas-liquid stream with a catalyst in a reactor to hydrate the olefin gas and form an alcohol.
Abstract:
A method is disclosed for producing polyvinyl chloride which includes mixing a vinyl chloride solution with an initiator solution in at least one high shear mixing device comprising at least one rotor/stator set producing a rotor tip speed of at least 5.1 m/sec (1000 ft/min), to form a polymerization mixture; and allowing the mixture to polymerize by free radical polymerization to form polyvinyl chloride. The polymerization mixture may be subjected to free radical polymerization conditions comprising a temperature in the range of about 20° C. to about 230° C. In some embodiments, the high shear mixing device produces a shear rate of at least 20,000 s−1. A system for carrying out the method is also disclosed.
Abstract:
Methods and systems for the hydroxylation of olefenic alcohols are described herein. The methods and systems incorporate the novel use of a high shear device to promote mixing and solubility of peroxides with the olefenic alcohol. The high shear device may allow for lower reaction temperatures and pressures and may also reduce hydroxylation time with existing catalysts.