Abstract:
A liquid crystal optical device is provided including at least two LC cells. A first LC cell layer has a predominant director orientation imparting a transversally non-uniform phase delay to a first polarization of an unpolarized incident light field passing therethrough while incident light of a second polarization orthogonal to the first light polarization passes therethrough undergoing transversally uniform phase delay. The first LC cell is configured to project a center extraordinary ray onto an optical axis of the device at the image surface. A second LC cell layer has a predominant director oriented orthogonally to the other predominant director in a plane perpendicular to the optical axis. The second LC layer imparts a transversally non-uniform phase delay to the second polarization of the incident light passing therethrough, the second LC cell being configured to project a center ordinary ray onto the optical axis at the image surface.
Abstract:
Variable liquid crystal devices for controlling the propagation of light through a liquid crystal layer use a frequency dependent material to dynamically reconfigure effective electrode structures in the device. The frequency of a drive signal that generates an electric field in the device can be varied, and the frequency dependent material has different charge mobilities for the different frequencies. At a low charge mobility, the frequency dependent material has little effect on the existing electrode structures. However, at a high charge mobility, the frequency dependent material appears as an extension of the fixed electrodes, and can be used to change the effective electrode structure and, thereby, the spatial profile of the electric field. This, in turn, changes the optical properties of the liquid crystal, thus allowing the optical device to be frequency controllable.
Abstract:
A liquid crystal optical device is provided. The optical device includes a layered structure including at least two support substrates. An external hole patterned control electrode is provided on one of the substrates and has an aperture. An internal hole patterned control electrode is provided on one of the substrates within the aperture, the internal control electrode and the outer control electrode being separated by a gap. The gap forms part of the aperture. A weakly conductive material is provided on one of the substrates over the aperture. A planar transparent electrode is provided on another one of the substrates. An alignment surface is provided on the substrates over the electrodes. A layer of liquid crystal material is contained by the substrates and in contact with the alignment surface of the substrates. A floating transparent electrode is provided on a side of one of the substrates opposite the outer and the internal hole patterned electrode.
Abstract:
A wafer level method of manufacturing a liquid crystal optical device removes the need for a rigid barrier fillet while minimizing any risk of contamination of the liquid crystal. An uncured adhesive may be deposited on a bottom substrate and partially cured to form a liquid crystal barrier. After addition of the liquid crystal and a top substrate, the adhesive is fully cured to bond the substrate layers together. An uncured adhesive may be used together with the partially cured adhesive, and may be deposited separately or filled into an extracellular matrix surrounding a plurality of liquid crystal cells. The adhesive may be cured by a variety of means, including light that may be spatially modulated. One or both of the substrates may be deformed during assembly so as to create a structure with a lensing effect on light passing through the liquid crystal region.
Abstract:
Liquid crystal light beam broadening devices and their manufacture are described. Beneficial aspects of beam broadening devices employed for controlled illumination and architectural purposes are presented including providing symmetric beam broadening, improving the beam intensity profile, beam divergence preconditioning and improving projected beam intensity uniformity. Both beam control devices having in-plane and homeotropic ground state liquid crystal alignment are presented.
Abstract:
A lighting device using a liquid crystal beam modulator produces good broadening of a light beam. The liquid crystal cell has a patterned electrode structure having a pattern of paired electrodes on a first one of a pair of cell substrates for providing a spatially modulated electric field extending into a liquid crystal material, and the cell is arranged with respect to a light source so that an incident beam will arrive through another of the pair of substrates and exit from the first one of the pair of substrates.
Abstract:
A liquid crystal optical device is described configured to provide variable beam steering or refractive Fresnel lens control over light passing through an aperture of the device. The device includes at least one layer of liquid crystal material contained by substrates having alignment layers. An arrangement of electrodes is configured to provide a spatially varying electric field distribution within a number of zones within the liquid crystal layer. The liquid crystal optical device is structured to provide a spatial variation in optical phase delay with a transition at a boundary between zones which is an approximation of a sawtooth waveform across the boundaries of multiple zones. The arrangement of electrodes, device layered geometry and methods of driving the electrodes increase the effective aperture of the overall optical device.
Abstract:
A spatially non-uniform electrode structure is proposed for controlling a spatially non- uniform electric field driving a tunable liquid crystal lens. The spatially non-uniform electrode structure enables the generation of a predetermined spatially non-uniform electric field profile where complex capacitive coupling between multiple different electrically floating neighboring electrode segments is employed for the generation of the electrical field of desired form by supplying an initial electric potential to a limited number of electrodes.
Abstract:
An auto-focus system employing a tunable liquid crystal lens is provided that collects images at different optical power values as the liquid crystal molecules are excited between a ground state and a maximum optical power state tracking image focus scores. An image is acquired at a desired optical power value less than maximum optical power established with the liquid crystal molecules closer a fully excited state than the maximum optical power state having the same image focus score. This drive signal employed during image acquisition uses more power than was used to achieve the same optical power value during the auto-focus scan, while actively driving the liquid crystal molecules is fast. A pause due to image transfer/processing delays after acquisition is employed to allow slow relaxation of the liquid crystal molecules back to the ground state in preparation for a subsequent focus search.
Abstract:
Liquid crystal light beam control devices and their manufacture are described. Beneficial aspects of beam broadening devices employed for controlled illumination and architectural purposes are presented including improving beam divergence control, improving beam broadening dynamic range control, beam divergence preconditioning, improving projected beam intensity uniformity and reducing color separation in the projected beam. Both beam control devices having in-plane and homeotropic ground state liquid crystal alignment are presented.