Abstract:
A vehicle mounted mobile container or vehicle inspection system, including: a radiation source, a movable vehicle for carrying the inspection system, and a detector arm rack which has a horizontal arm and a vertical arm, a first end of the horizontal arm is connected to the vehicle and a second end thereof is connected to an end of the vertical arm. The horizontal arm and the vertical arm are connected by a pivotal connecting device such that the vertical arm may pivot in a vertical plane, and the horizontal arm and the vertical arm may be retracted in a same horizontal plane. The novel arm rack construction may reduce the space occupied by it on top of the scanning vehicle after the arm rack is stowed so as to reduce the eight of the scanning vehicle under running condition.
Abstract:
A mobile radiation inspection apparatus includes a vehicle body, a traveling mechanism, a boom assembly, a first imaging device, and a second imaging device. The boom assembly is mounted on the vehicle body and is configured to switch between an inspection state and a transportation state. The first imaging device includes a first ray source and a first ray detector both mounted on the boom assembly. The first ray source is positioned at the top of an inspection channel. The second imaging device includes a second ray source and a second ray detector. The second ray detector cooperates with the second ray source to detect rays emitted by the second ray source, and the second ray source is positioned on a side surface of the inspection channel. The mobile radiation inspection apparatus implements multi-angle and multi-mode scanning.
Abstract:
The present disclosure discloses a vehicle-mounted type back scattering inspection system. The vehicle-mounted type back scattering inspection system includes a carriage and a back scattering imaging device, the scanning range of the back scattering imaging device is variable. As the scanning range of the back scattering imaging device of the present disclosure is variably set, the inspection range of the back scattering imaging device can be expanded.
Abstract:
An inspection device is provided, includes a first vehicle body, a radiation source, arranged in the first vehicle body, a second vehicle body, a protective wall, arranged on the second vehicle body, a boom, and detectors, arranged on the boom, and the boom is rotatably connected to the first vehicle body and the second vehicle body, forms an inspection passage together with the first vehicle body and the second vehicle body. The inspection device can improve the adaptability.
Abstract:
The present disclosure provides a radiation inspection apparatus and a radiation inspection method. The radiation inspection apparatus includes: a radiation inspection device comprising a ray source and a detector that cooperates with the ray source to perform scanning inspection on an object to be inspected, the radiation inspection device having an inspection channel for the object to be inspected to pass through when scanning inspection is performed thereon; and traveling wheels provided at the bottom of the radiation inspection device to enable the radiation inspection apparatus to travel in an extension direction of the inspection channel, and the traveling wheels are configured to rotate 90° to enable the radiation inspection apparatus to travel in a direction perpendicular to the extension direction of the inspection channel.
Abstract:
The present disclosure discloses a vehicle-mounted type back scattering inspection system. The back scattering imaging device has a vehicle-mounted working state and a ground working state, and in the vehicle-mounted working state, the back scattering imaging device performs inspection work in the carriage; in the ground working state, the back scattering imaging device performs the inspection work on the ground at the outside of the carriage; and the back scattering imaging device is separately arranged relative to the carriage and is movable between the carriage and the ground to switch between the vehicle-mounted working state and the ground working state.
Abstract:
The present disclosure relates to a security inspection device and a transfer method, and the security inspection device includes an arm frame, provided with detectors, and configured to form an inspection channel; a first compartment, internally provided with a radiation source and connected with the arm frame, a protection wall, connected with the first compartment or the arm frame, and configured to perform radiation protection for an object to be protected, and a tire assembly, configured to enable the security inspection device to move relative to the ground, and the arm frame, the first compartment, the protection wall and the tire assembly are set to be transported together in a connected state.
Abstract:
The present disclosure relates to a security inspection device and a transfer method, and the security inspection device includes an arm frame, provided with detectors, and configured to form an inspection channel, a first compartment, internally provided with a radiation source and connected with the arm frame, a protection wall, connected with the first compartment or the arm frame, and configured to perform radiation protection for an object to be protected, and a tire, configured to enable the security inspection device to move relative to the ground, and the arm frame, the first compartment and the protection wall are set to be transported together in a connected state.
Abstract:
The present disclosure relates to vehicle traction apparatus and radiation imaging check systems. One illustrative implementation may comprise two parallel tracks, two sets of traction mechanisms and a driving unit, wherein the tracks are disposed on a ground. The two sets of traction mechanisms may be respectively disposed on the two tracks. Further, the driving unit may be adapted for driving the two sets of traction mechanisms to synchronously move along the two tracks. In some embodiments, each of the two sets of traction mechanisms includes a body, a cantilever, a lifting driving mechanism and a wheel supporting assembly, and may include features such as the body being mounted on the track, the cantilever being disposed parallel to a direction of the tracks, and/or both ends of the cantilever being respectively connected with the lifting driving mechanism and the wheel supporting assembly.
Abstract:
The present disclosure relates to mobile radiographic inspection systems and lifting devices for mobile radiographic inspection systems, including those, for example, in the field of radiographic detection of large objects such as containers. In one illustrative implementation, the present disclosure describes a lifting device for a mobile radiographic inspection system, the device comprising a driving motor and at least two screw lifters, wherein the driving motor is connected to each of the screw lifters via a transmission, and a lower end of a lifting rod of the screw lifter is configured to connect with a radiographic inspection device. In implementations, the lifting device may further comprise a mounting assembly, which is adapted to connect the lifting device to a vehicle body of the mobile radiographic inspection system.