Abstract:
We disclose systems and methods of dynamically virtualizing a wireless communication network. The communication network is comprised of heterogeneous multi-RAT mesh nodes coupled to a computing cloud component. The computing cloud component virtualizes the true extent of the resources it manages and presents an interface to the core network that appears to be a single base station.
Abstract:
A gateway situated between the RAN and the core network may provide 2G/3G/4G/Wi-Fi convergence for nodes in a network on a plurality of radio access technologies. In some embodiments, a convergence gateway is described that allows for legacy radio access network functions to be provided by all-IP core network nodes. A multi-RAT gateway provides 2G/3G Iuh to IuPS interworking, IuCS to VoLTE interworking via a VoLTE proxy, IuPS and 4G data local breakout or S1-U interworking, and 2G A/IP and Gb/IP to VoLTE and S1-U/local breakout interworking. The multi-RAT gateway may thereby support all voice calls via VoLTE, and all data over S1 or local breakout, including VoLTE. The multi-RAT gateway may provide self-organizing network (SON) capabilities for all RATs. A multi-RAT base station may provide 2G and 3G front-end interworking to Iuh.
Abstract:
A gateway situated between the RAN and the core network may provide 2G/3G/4G/Wi-Fi convergence for nodes in a network on a plurality of radio access technologies. In some embodiments, a convergence gateway is described that allows for legacy radio access network functions to be provided by all-IP core network nodes. A multi-RAT gateway provides 2G/3G Iuh to IuPS interworking, IuCS to VoLTE interworking via a VoLTE proxy, IuPS and 4G data local breakout or S1-U interworking, and 2G A/IP and Gb/IP to VoLTE and S1-U/local breakout interworking. The multi-RAT gateway may thereby support all voice calls via VoLTE, and all data over S1 or local breakout, including VoLTE. The multi-RAT gateway may provide self-organizing network (SON) capabilities for all RATs. A multi-RAT base station may provide 2G and 3G front-end interworking to Iuh.
Abstract:
A method for scheduling resources in a network where the scheduling activity is split across two nodes in the network is disclosed, comprising: receiving, from a local scheduler in a first radio access network, access network information at a global scheduler; accessing information regarding a second radio access network allocating, at the global scheduler, resources for secondary allocation by the local scheduler; applying a hash function to map the allocated resources for secondary allocation to a set of hash values; and sending, from the global scheduler, the set of hash values to the local scheduler.
Abstract:
A method may be disclosed in accordance with some embodiments, comprising: receiving, at a virtualizing gateway between the eNodeB and a first core network, a service request from a first user equipment (UE) via an eNodeB; applying a filter to an identifier of the UE to authenticate the UE; and forwarding, based on the applied filter, the service request from the first UE to the first core network. The identifier may be an international mobile subscriber identity (IMSI). The filter may be a whitelist containing a plurality of IMSIs to be granted service or a blacklist containing a plurality of IMSIs to be denied service, the service request may be a Long Term Evolution (LTE) attach request, and the method may further comprise forwarding the message from the first UE to a first mobility management entity (MME) in the first core network.
Abstract:
A gateway for X2 interface communication is provided, including: an X2 internal interface for communicating with, and coupled to, a plurality of radio access network, RAN, nodes; an X2 external interface for communicating with, and coupled to, a destination node outside of the plurality of RAN nodes, the X2 external interface further including a single X2 endpoint for the plurality of RAN nodes, such that the X2 external interface provides a single interface for an external macro cell; and an S1 interface for the core network to interact with the plurality of RAN nodes through a single endpoint. The gateway may further include a handover module for maintaining X2 signaling associations and transactions for incoming and outbound handovers, including X2 to S and S to X2 translation.
Abstract:
This invention discloses a heterogeneous mesh network comprised of multiple radio access technology nodes, wherein nodes can function dynamically, switching roles between client and server. Moreover, these nodes can operate in a heterogeneous fashion with respect to one another. In an alternate embodiment, the invention describes a mesh network comprised of nodes operating over TV white-space. This invention additionally discloses self-organizing network embodiments and embodiments that include novel methods of monitoring operational parameters within a mesh network, adjusting those operational parameters, and creating and implementing routing tables.
Abstract:
This application discloses methods for creating self-organizing networks implemented on heterogeneous mesh networks. The self-organizing networks can include a computing cloud component coupled to the heterogeneous mesh network. In the methods and computer-readable mediums disclosed herein, a processor receives an environmental condition for a mesh network. The processor may have measured the environmental condition, or it could have received it from elsewhere, e.g., internally stored information, a neighboring node, a server located in a computing cloud, a network element, user equipment ("UE"), and the like. After receiving the environmental condition, the processor evaluates it and determines whether an operational parameter within the mesh network should change to better optimize network performance.
Abstract:
Systems, methods and computer software are disclosed for providing base station and Remote Radio Head (RRH) functionality. In one embodiment, a method is disclosed, the method for providing base station and Remote Radio Head (RRH) functionality in a base station, comprising: providing a baseband card; providing a radio head, the radio head coupled to the baseband card by way of an interface; and switching, under the control of a processor, between use of the baseband card and use of an external baseband unit for controlling the radio head, the external baseband unit used via a Common Public Radio Interface (CPRI) port, thereby providing dual base station and remote radio head functionality.
Abstract:
A method for utilizing quality of service information in a network with tunneled backhaul is disclosed, comprising: establishing a backhaul bearer at a base station with a first core network, the backhaul bearer established by a backhaul user equipment (UE) at the base station, the backhaul bearer having a single priority parameter, the backhaul bearer terminating at a first packet data network gateway in the first core network; establishing an encrypted internet protocol (IP) tunnel between the base station and a coordinating gateway in communication with the first core network and a second core network; facilitating, for at least one UE attached at the base station, establishment of a plurality of UE data bearers encapsulated in the secure IP tunnel, each with their own QCI; and transmitting prioritized data of the plurality of UE data bearers via the backhaul bearer and the coordinating gateway to the second core network.