Abstract:
Techniques for scheduling UEs are described. In one design, a scheduler (e.g., for a cell) may receive channel direction information (CDI) and channel strength information (CSI) from a plurality of UEs. In one design, the CDI from each UE may include at least one eigenvector, and the CSI from each UE may include at least one singular value corresponding to the at least one eigenvector. The scheduler may schedule at least one UE among the plurality of UEs for data transmission based on the CDI and CSI from the plurality of UEs. The scheduler may select the at least one UE based on a metric related to signal-to-leakage ratio (SLR), or spectral efficiency, etc. In one design, the scheduler may evaluate the performance of different sets of UEs to determine whether to schedule one UE for single-user MIMO or multiple UEs for multi-user MIMO.
Abstract:
An authorization scheme limits the number of nodes that send out resource utilization messages. Here, a first node may determine whether a second node is allowed to transmit a resource utilization message, and send a message to the second node indicative of this determination. The second node may then determine whether to send out a resource utilization message based on the message from the first node and the quality of service associated with receive traffic at the second node. In some aspects, a node that is allowed to transmit a RUM may be identified based on whether the node is expected to be scheduled to use a given resource.
Abstract:
Various traffic management techniques may be employed in a multi-hop wireless communication system. For example, a decision to transmit data to another node may be based on whether that node is able to effectively transmit its data. A decision to transmit an interference management message may be based on the amount of data a parent node may transmit. A decision to transmit an interference management message may be based on how effectively data is being transmitted. A weight may be assigned for an interference management message based on a traffic scheduling policy.
Abstract:
Various traffic management techniques may be employed in a multi-hop wireless communication system. For example, a decision to transmit data to another node may be based on whether that node is able to effectively transmit its data. A decision to transmit an interference management message may be based on the amount of data a parent node may transmit. A decision to transmit an interference management message may be based on how effectively data is being transmitted. A weight may be assigned for an interference management message based on a traffic scheduling policy.
Abstract:
Techniques for performing data detection and decoding in a manner to account for guard subbands are described. A receiver obtains received pilot symbols for pilot subbands and received data symbols for data subbands. Channel estimates are derived based on the received pilot symbols with zeroed-out pilot subbands filled with zeros. Data detection is performed on the received data symbols with the channel estimates to obtain data symbol estimates. Estimates of noise and estimation errors due to the zeroed-out pilot subbands are derived. LLRs are then computed based on the data symbol estimates, the channel estimates, and the estimates of the noise and estimation errors. The LLRs are deinterleaved and decoded to obtain decoded data.
Abstract:
Frame structures and transmission techniques for a wireless communication system are described. In one frame structure, a super-frame includes multiple outer-frames, and each outer-frame includes multiple frames, and each frame includes multiple time slots. The time slots in each super-frame are allocated for downlink and uplink and for different radio technologies (e.g., W-CDMA and OFDM) based on loading. Each physical channel is allocated at least one time slot in at least one frame of each outer-frame in the super-frame. An OFDM waveform is generated for each downlink OFDM slot and multiplexed onto the slot. A W-CDMA waveform is generated for each downlink W-CDMA slot and multiplexed onto the slot. A modulated signal is generated for the multiplexed W-CDMA and OFDM waveforms and transmitted on the downlink. Each physical channel is transmitted in bursts. The slot allocation and coding and modulation for each physical channel can change for each super-frame.
Abstract:
Techniques for managing candidate sets for a user equipment (UE) are described. In an aspect, multiple candidate sets of cells of different classes may be maintained for the UE. Each candidate set may include cells of a particular class. As some examples, the multiple candidate sets may be for cells of different transmit power levels, cells of different association types, cells associated with different resources, etc. The multiple candidate sets may be maintained separately based on applicable criteria and rules. The multiple candidate sets may be used to select a serving cell for the UE and/or for other communication purposes for the UE. In another aspect, one or more candidate sets may be maintained for the UE and may be used for multiple communication purposes for the UE. The multiple communication purposes may include server selection, interference management, measurement reporting, etc.
Abstract:
Systems and methodologies are described that facilitate providing opportunistic relay node communication based on scheduling of other communications in a wireless network. In particular, a relay node can maintain a backhaul link with an access point and an access link with a mobile device to facilitate communicating information therebetween. Time slots during which the backhaul link is active can be determined and avoided during scheduling access link communications with the mobile device. Furthermore, resource assignments from the access point to the mobile device can be monitored and decoded such that time slots associated therewith can also be determined and avoided. Thus, the relay node can communicate with mobile devices in time slots where the backhaul link is inactive and/or the mobile devices are not occupied communicating directly with the access point.
Abstract:
Methods and apparatuses for dynamic interference management for wireless networks are disclosed. A node in a wireless network is configured to determine whether to cease transmissions during a period of time designated for a first node to transmit to a second node based on at least parameter relating to a channel between the first and second nodes.
Abstract:
Systems and methods are described that facilitate the determination and request of resources a node may wish to reserve. The resources include a plurality of carriers that are shared with other nodes. In an approach, the node determines a condition related to a plurality of resources; identify a desired amount of resources from the plurality of resources based on the condition; and transmit a resource utilization message (RUM) for at least one of the plurality of resources based on the desired amount of resources.