Abstract:
Methods, systems, and devices for wireless communications are described. A wireless node may receive one or more data messages which may include a set of packets that may each be associated with a sequence number. The set of packets may be received with a gap in the set of sequence numbers, indicating missing packets. The wireless node may forward the set of packets to a processing layer of the wireless node. The wireless node may then accept, from the processing layer of the wireless node, a set of duplicate (DUP) acknowledgment (ACK) messages based on the set of packets being forwarded to the processing layer while having the gap in the set of sequence numbers. The wireless node may transmit, a subset of the set of DUP ACKs rather than all of the set of DUP ACKs to another wireless node, such as a base station.
Abstract:
Method and apparatus are provided for timing advance (TA) in RACH. In accordance with some implementation, a UE may override an already running TA value with a received TA value even when the received TA is received in a RACH message 2 as part of contention based RACH procedure while a timer associated with the already running TA value has not expired.
Abstract:
A method and apparatus for prioritizing data packets when stateful compression is enabled for wireless communications is disclosed. For example, the aspects include receiving a plurality of data packets scheduled in a first order for transmission. The described aspects further include prioritizing one or more data packets of the plurality of data packets as one or more prioritized data packets, each prioritized data packet being scheduled in an order for transmission different from the first order for transmission. The described aspects further include compressing one or more unprioritized data packets of the plurality of data packets into one or more compressed unprioritized data packets. The described aspects further include scheduling the one or more prioritized data packets and the one or more compressed unprioritized data packets in a second order for transmission, the second order differing from the first order.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for optimizing performance of random access procedures by a user equipments (UE). According to aspects, the UE may be configured to obtain one or more settings for uplink transmissions to an eNodeB, the one or more settings having been determined from a previous connection with the eNodeB, and perform a random access procedure based on the obtained one or more settings.
Abstract:
Apparatuses and methods for a wireless communication device having a first Subscriber Identity Module (SIM) and a second SIM to manage communication via the first SIM and the second SIM are disclosed. The method can include, but is not limited to, sending a first message including an indication of an extended signaling capability, receiving a second message including an inquiry regarding the extended signaling capability, and sending a third message including extended capability information, responsive to receiving the second message.
Abstract:
Apparatuses and methods are described herein for a wireless communication device to request uplink grants associated with the first subscription using at least one Radio Frequency (RF) resource, including tuning away from the first subscription to the second subscription for a tune-away time interval, determining whether the tune-away time interval exceeds a threshold, transmitting at least one scheduling request associated with the first subscription for a throttled count in response to the tune-away time interval exceeding the threshold, wherein the throttled count is less than a default count, determining whether an uplink grant has been received in response to any of the at least one scheduling request transmitted within the throttled count, and initiating an uplink data Random Access Channel (RACH) process in response to not receiving the uplink grant.
Abstract:
Methods, systems, and devices for wireless communications are disclosed by the present application. A request to establish a call using a first connection may be received, the first connection using a first radio access technology to communicate with a radio access network. During execution of a procedure to establish the call, a command to handover communications from the first connection to a second connection that uses a second radio access technology to communicate with the radio access network may be received. The second connection may be established in response to the command, and a message indicating that the request to establish the call was successfully received may be transmitted over the second connection. Also, a message indicating that an alert of the call is being issued may be transmitted over the second connection.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine that data is buffered for transmission via a first logical channel that does not have a valid scheduling request configuration. The UE may transmit, via a scheduling request resource of a second logical channel that has a valid scheduling request configuration, a scheduling request for resources to transmit the data buffered for transmission via the first logical channel. Numerous other aspects are described.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, via a first connection of a dual connectivity mode, a first packet having a first sequence number. The UE may receive, via a second connection of the dual connectivity mode, a second packet having a second sequence number. The UE may determine, based at least in part on the first sequence number and the second sequence number, that the first packet is received out of order. The UE may maintain a packet order for reception of subsequent packets via the first connection or the second connection. The UE may drop the first packet based at least in part on the determination that the first packet is received out of order. Numerous other aspects are provided.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may avoid frequent handover in small cells by triggering handover to a macro cell. The UE may determine that the UE performs a number of handovers within a time period. The UE may determine to trigger a handover to the macro cell. The UE may identify the macro cell based on measuring the macro cell during multiple handovers. The UE may determine to refrain from indicating signal measurements of small cells in a measurement report. Accordingly, a measurement report may include a signal measurement of the macro cell and omit the signal measurements of the small cells. The UE may transmit the measurement report to the small cell acting as a serving cell for the UE. Based the measurement report, the UE may receive a message initiating a handover procedure with the macro cell.