Abstract:
A mobile communication device with multiple subscriptions includes a single baseband-radio frequency (BB-RF) resource chain. A first identity module, such as a subscriber identity module (SIM), a second identity module (e.g., a second SIM), and a controller are communicatively coupled to the single BB-RF resource chain. The first identity module is associated with a first subscription, and the second identity module is associated with a second subscription. The controller may be configured to arbitrate access to the single BB-RF resource chain to perform a first activity that corresponds to the first subscription or a second activity that corresponds to the second subscription. For example, the controller may interrupt a data session processed by the single BB-RF resource chain in response to receiving information indicating that a voice call is to be processed by the single BB-RF resource chain.
Abstract:
DSP architectures having improved performance are described. In an exemplary architecture, a DSP includes two MAC units and two ALUs, where one of the ALUs replaces an adder for one of the two MAC units. This DSP may be configured to operate in a dual-MAC/single-ALU configuration, a single-MAC/dual-ALU configuration, or a dual-MAC/dual-ALU configuration. This flexibility allows the DSP to handle various types of signal processing operations and improves utilization of the available hardware. The DSP architectures further includes pipeline registers that break up critical paths and allow operations at a higher clock speed for greater throughput.
Abstract:
A method for overload detection according to one embodiment of the invention includes a control process and a data process. In response to a timing signal, the control process sets a state of a timing indicator. Upon execution of a time-constrained operation, the data process checks the state of the timing indicator. In other embodiments, subsequent to an overload detection, an auxiliary data process is configured to execute in a mode that consumes fewer processing cycles.
Abstract:
A method for overload detection according to one embodiment of the invention includes a control process and a data process. In response to a timing signal, the control process sets a state of a timing indicator. Upon execution of a time-constrained operation, the data process checks the state of the timing indicator. In other embodiments, subsequent to an overload detection, an auxiliary data process is configured to execute in a mode that consumes fewer processing cycles.
Abstract:
A spread spectrum wireless device (100) may include a receiver (110), a searcher (128), a search controller (130) and other features. The search controller (130) selectively generates control signals to control the searcher (128), which searches for a spread-spectrum signal. In one embodiment, the architecture of the searcher (128) is dynamically configurable by the search controller (130) to selectively search multiple channels using multiple frequency bins for the signal.
Abstract:
A method and apparatus for communicating both voice and control data between a communication device (such as a cellular phone) (100) and an external accessory (such as a hands-free kit) (102) over a data bus (101). The method includes formatting a sequence of bits into a repeating sequence of first time slots and second time slots, transmitting the voice data in the first time slot, and transmitting the control data in the second time slot. Notably, a first bit of each of the second time slots comprises a clock bit that alternates between a high value and a low value (e.g. a "1" or a "0") as between consecutive second time slots.
Abstract:
Demodulator architectures for processing a received signal in a wireless communications system. The demodulator includes a number of correlators coupled to a combiner. Each correlator typically receives and despreads input samples (which are generated from the received signal) with a respective despreading sequence to provide despread samples. Each correlator then decovers the despread samples to provide decovered 'half-symbols' and further demodulates the decovered half-symbols with pilot estimates to generate correlated symbols. The decovering is performed with a Walsh symbol having a length (T) that is half the lenght (2T) of a Walsh symbol used to cover the data symbols in the transmitted signal. The combiner selectively combines correlated symbols from the assigned correlators to provide demodualted symbols. One or more correlators can be assigned to process one or more instances of each transmiteed signal. The pilot estimates used within each assigned correlator to demodulate the decovered half-symbols are generated based on the signal instance being prcessed by that correlator.
Abstract:
A mobile communication device with multiple subscriptions includes a single baseband-radio frequency (BB-RF) resource chain. A first identity module, such as a subscriber identity module (SIM), a second identity module (e.g., a second SIM), and a controller are communicatively coupled to the single BB-RF resource chain. The first identity module is associated with a first subscription, and the second identity module is associated with a second subscription. The controller may be configured to arbitrate access to the single BB-RF resource chain to perform a first activity that corresponds to the first subscription or a second activity that corresponds to the second subscription. For example, the controller may interrupt a data session processed by the single BB-RF resource chain in response to receiving information indicating that a voice call is to be processed by the single BB-RF resource chain.
Abstract:
The invention is a digital signal processor architecture that is designed to speed up frequently-used signal processing computations, such as FIR filters, correlations, FFTs and DFTs. The architecture uses a coupled dual-MAC architecture (MAC1), (MAC2) and attaches a dual-MAC coprocessor (MAC3), (MAC4) onto it in a unique way to achieve a significant increase in processing capability.