Abstract:
A wind turbine is provided. The wind turbine comprises a generator, a power converter for converting at least a portion of electrical power generated by the generator, an energy dissipating unit and a controller. The power converter comprises a generator-side converter, a grid-side converter and a DC (direct current) link there between. The energy dissipating unit is operatively coupled to the DC-link. The controller is adapted to activate the energy dissipating unit to dissipate energy from the DC-link in response to a shutdown request.
Abstract:
A wind turbine generator is disclosed herein. In a described embodiment, the wind turbine generator comprises an electrical generator 101 configured to generate AC signals, a plurality of power converters 110,112,111 operated by a gating signal with each power converter configured to convert the AC signals from the electrical generator 101 into fixed frequency AC signals. The wind turbine generator further comprises a controller configured to enter a fault mode when a grid voltage falls outside an acceptable threshold, and during the fault mode the controller is configured to provide a reactive current reference dependant on a grid voltage distant from the wind turbine generator.A method of controlling a wind turbine generator is also disclosed.
Abstract:
A method for operating a power generation system coupled to a power grid during a grid unbalance event, a method for determining an injection current to be supplied into a power grid by a power generation system, and a method for addressing an asymmetric grid fault in a power grid connected to a power generation system are provided. The methods may be carried out based on a reactive or an active power/current priority. For reactive power/current priority, a positive sequence reactive current and a negative sequence reactive current may be first determined. The positive sequence reactive current and the negative sequence reactive current may be adjusted, and a positive sequence active current and a negative sequence active current may be determined such that a maximum current limit, a maximum allowed active power ripple and a maximum grid side converter voltage are not exceeded. For active power/current priority, a positive sequence active current and a negative sequence active current may be first determined. A positive sequence reactive current and a negative sequence reactive current may then be determined based on the positive sequence active current and the negative sequence active current. The positive sequence active current, the negative sequence active current, the positive sequence reactive current and the negative sequence reactive current may be determined such that a maximum current limit, a maximum allowed active power ripple and a maximum grid side converter voltage are not exceeded.
Abstract:
A method for controlling a wind power plant, the wind power plant including a plant controller for controlling a plurality of wind turbine generators. The method for controlling a wind power plant allows the wind power plant to continue operating through a grid fault in a weak grid environment. In the method, a fault recovery process is carried out with a wind turbine power controller during a wind turbine fault recovery state to determine a grid voltage (VWTG), compare the grid voltage to a predetermined reference voltage (Vref) to obtain a difference value, and determine a current reference (QrefVC) based on the difference value for generating a reactive current (Idref) for regulating the grid voltage to the predetermined reference grid voltage. A corresponding wind power plant is further provided.
Abstract:
A harmonic filter arrangement suitable for use in a wind turbine is provided. The harmonic filter arrangement comprises a first filter arrangement, and a second filter arrangement. The first filter arrangement comprises at least an inductor, and the second filter arrangement comprises at least an inductor and a capacitor. The inductor of the first filter arrangement comprises a first winding around a magnetic core, and the inductor of the second filter arrangement comprises a second winding around the first winding.
Abstract:
A method for operating a wind turbine and a system for operating a wind turbine are provided. The wind turbine includes a grid side converter and the grid side converter is coupled to a grid via a power line. The method includes determining a wind turbine operation strategy; determining a first active power reference and a first reactive power reference indicating a requested amount of active power and reactive power, respectively, depending on at least the wind turbine operation strategy; measuring a grid voltage of the grid; determining a positive sequence component and a negative sequence component of the grid voltage i.e. a positive sequence voltage and a negative sequence voltage; determining a second active power reference and a second reactive power reference indicating an actual amount of active power and reactive power to be supplied by the grid side converter to the grid, respectively, depending on at least the first active power reference, the first reactive power reference, and the wind turbine operation strategy; generating, based on at least the wind turbine operation strategy, a first parameter and a second parameter which define a proportion of positive sequence current component and negative sequence current component to be injected by the grid side converter in order to supply active power and reactive power in accordance with the second active power reference and the second reactive power reference; generating a current reference based on at least the second active power reference, the second reactive power reference, the positive sequence voltage, the negative sequence voltage, the first parameter, and the 77 second parameter; and supplying, with the grid side converter, active and reactive power to the power line based on the current reference.
Abstract:
A method of operating a wind turbine is provided. The wind turbine comprises a turbine rotor with at least one blade having a variable pitch angle, a power generator, and a power converter connected to the power generator via a first circuit breaker and to a power grid via a second circuit breaker. According to the method, overvoltage events at the power grid are monitored. If an overvoltage event is detected, the method comprises opening the first circuit breaker and the second circuit breaker, disabling active operation of the power converter, connecting a power dissipating unit to the power generator to dissipate power output from the power generator, and moving the pitch angle of the at least one blade towards a feathered position.
Abstract:
The invention relates to a control system for compensating undesired electrical harmonics on an electrical grid. Part of the control system referred to as a harmonic compensator is operatively connected with a power inverter of a power producing unit supplying power to the grid. Another part of the control system, referred to as an impedance detector, is operatively connected to a point of coupling to which point one or more power producing units are connected. The impedance detector is configured to scan impedances as a function of frequency to identify frequencies of impedance peaks which peaks are indicative of resonance frequencies. The determined resonance frequencies are supplied to one or more the harmonic compensators. A compensator determines control signals to the inverter which causes the inverter to inject compensation currents to the grid which currents will damp currents oscillating at or close to the determined resonance frequency.
Abstract:
A power dissipating arrangement for dissipating power from a generator in a wind turbine is provided. The generator comprises a plurality of output terminals corresponding to a multi-phase output. The power dissipating arrangement comprises a plurality of dissipating units, a plurality of semiconductor switches, a trigger circuit for switching the semiconductor switches and a control unit for controlling the operation of the trigger circuit, thereby controlling the switching of the semiconductor switches. Each dissipating unit includes a first terminal and a second terminal. The first terminal of each dissipating unit is coupled to each output terminal of the generator. Each semiconductor switch includes a first terminal anode, a second terminal and a gate terminal. The first terminal of each semiconductor switch is coupled to the second terminal of each dissipating unit and the second terminal of the semiconductor switch is coupled to the second terminal of another dissipating unit, such that the second terminal of each dissipating unit is coupled to the first terminal of one semiconductor switch and the second terminal of another semiconductor switch. The trigger circuit is coupled to the gate terminal of the plurality of the semiconductor switches for switching the semiconductor switches.
Abstract:
According to an embodiment of the present invention, a method of operating a wind turbine including a power generator, a generator/machine side converter connected to the power generator, a grid/line side converter connected to a power grid through power components, and a DC-link connected between the machine side converter and the line side converter, comprises: Monitoring the power grid for overvoltage events; if an overvoltage event is detected disabling active operation of the machine side converter and of the line side converter, enabling an AC- load dump connected between the machine side converter and the power generator in order to dissipate active power output by the power generator into the AC-load dump, waiting for a waiting period, and enabling active operation of the line side converter and the machine side converter if the overvoltage ends within the waiting period.