Abstract:
A wind turbine blade has a first blade portion and a second blade portion, each blade portion having a spar cap portion. A connection joint for coupling the first and second blade portions together includes first metal layers associated with the first spar cap portion and second metal layers associated with the second spar cap portion. The first metal layers and the second metal layers are interleaved and clamped together between the first and second blade portions.
Abstract:
A method and apparatus for assembling a wind turbine blade (10) including first and second outer shell portions (16, 18) and an internal web (12) are provided. An adhesive material (42) is applied to a top end (30) of the internal web (12) as well as the edges (62, 64) of the first outer shell portion (16) for connection to the second outer shell portion (18). Localized heat energy is applied to pre-cure the adhesive material (42) at the top end (30) of the internal web (12) before applying heat energy to fully cure all of the adhesive material (42) in the wind turbine blade (10). The pre-curing is performed by a removable localized heater device (72), and it assures that the integrity of the bond between the internal web (12) and the second outer shell portion (18) is maintained during the full curing of the blade (10), when temporary thermal deformation of the outer shell (14) sometimes occurs.
Abstract:
The invention provides a method of manufacturing a spar for a wind turbine blade. The method comprises steps of providing at least two caps, each cap forming an intermediate portion between two end portions, where the end portions each forms a cap joint surface portion along a longitudinal extending edge of the end portion and the intermediate portion forms an outer surface portion of the spar, providing at least two webs, each web being provided with web joint surface portions along opposite and longitudinally extending edges, and connecting the joint surface portions of the caps with the joint surface portions of the webs to form a tubular configuration of the spar. The caps are provided so that the end portions extend transversely to the intermediate portion and the caps are arranged relative to each other so that the end portions of one cap extend from the intermediate portion towards the end portions of another cap.
Abstract:
A method of making an elongate reinforcing structure, such as a shear web, for a wind turbine blade is described. The reinforcing structure comprises a longitudinally-extending web and a longitudinally-extending flange. The flange extends along a longitudinal edge of the web and is arranged transversely to the web. The method involves providing a flange structure comprising a flange portion, and a projecting portion that extends along the length of the flange portion and projects transversely from a surface of the flange portion. The projecting portion is bonded between laminate layers of the web. The flange structure is preferably a pultruded component having a T-shaped cross-section. The method allows a simple, inexpensive and reconfigurable mould tool to be used. In preferred embodiments the mould tool has a flat surface without sidewalls.
Abstract:
The invention relates to a method for manufacturing a composite material article, the method comprising -providing a mould (4), -placing at least one layer (1) of bulk fiber material on the mould (4), -placing, at an edge of the bulk fiber material layer (1), a flange element (2) partially overlapping the bulk fiber material layer (1), and partially extending so as to form a flange, and -curing bulk resin on the mould, where the bulk fiber material layer has been impregnated with the bulk resin,with the flange element (2) placed at the edge of the bulk fiber material layer (1).
Abstract:
The invention provides a method of making a tubular element for a wind turbine blade where at least two sections of the blade are assembled to form the tubular element, e.g. a spar or a blade shell. According to the invention, the sections are prepared individually and assembled by co-curing of uncured resin of one of the sections. Accordingly, the process of applying glue and the glue itself is avoided, and the bonding quality can potentially be increased.
Abstract:
The invention provides a method of manufacturing a spar (1) for a wind turbine blade. The method comprises steps of providing at least two caps (2a, 2b), each cap forming an intermediate portion (4) between two end portions (5), where the end portions each forms a cap joint surface portion (6) along a longitudinal extending edge of the end portion and the intermediate portion forms an outer surface portion (7) of the spar, providing at least two webs (3a, 3b), each web being provided with web joint surface portions (8) along opposite and longitudinally extending edges, and connecting the joint surface portions of the caps with the joint surface portions of the webs to form a tubular configuration of the spar. The intermediate portions and the end portions are provided so that they comprise different materials.
Abstract:
A wind turbine blade comprising: a first blade portion having a shell that defines a suction side, a pressure side, a leading edge, and a trailing edge of the blade, the first blade portion further including a first blade portion end surface at one end of the first blade portion; a second blade portion having a shell that defines a suction side, a pressure side, a leading edge, and a trailing edge of the blade, the second blade portion further including a second blade portion end surface at one end of the second blade portion, wherein the first blade portion and the second blade portion are configured to be coupled together at the first and second blade portion end surfaces; and a connection joint for coupling the first and second blade portions together, wherein the connection joint includes: a first insert embedded in the first blade portion; a fitting integral with the first insert and projecting from the first blade portion end surface toward the second blade portion end surface; a second insert embedded in the second blade portion; and a fastener arranged to fasten the second insert to the fitting.
Abstract:
A method and apparatus (14) for assembling a reinforcement web (12) for use with a wind turbine blade (10) are provided. A pre-formed flange structure (20) to be integrated with laminate layers (58, 60) to form the reinforcement web (12) is clamped into position against a mould end surface (76) using one or more locating clamps (16). The locating clamps (16) include first and second clamp blocks (80, 82) that are shaped to provide an external profile that avoids resin collection and bridging during resin injection molding, while allowing for clamping to be applied to the flange structure (20) with an easily assembled and disassembled removable engagement of the clamp blocks (80, 82). The locating clamp (16) prevents undesirable dislodgment of the flange structure (20) during the assembly process for the reinforcement web (12), and without necessitating the use of complex or expensive molding equipment or processes.
Abstract:
A production system for a wind turbine component is described. The system includes an elongate mould assembly extending in a longitudinal direction, the mould assembly comprising a mould surface and having a width that varies in the longitudinal direction. First and second tracks are defined respectively on opposite longitudinal sides of the mould surface. The perpendicular distance between the respective tracks varies along the length of the track. A transport assembly is moveable relative the mould assembly in the longitudinal direction. The transport assembly includes a pair of side supports arranged to move along the respective tracks, and a gantry supported above the mould assembly by the side supports. The gantry extends transverse to the longitudinal direction. The transport assembly is configured such that the side supports move relative to one another in a direction transverse to the longitudinal direction in accordance with the varying distance between the tracks as the transport assembly moves in the longitudinal direction.