Abstract:
In a first aspect, the embodiments of the invention provide a surveillance system for a wind park comprising a detection system configured to detect flying birds and issue a detection signal; one or more drones; and a control system configured to command one or more of said drones to be deployed based on the detection of birds flying in the vicinity of the wind park. The invention extends to a wind park comprising a plurality of wind turbines and a system as defined above. The invention also embraces a method of operating a surveillance system in a wind park, comprising scanning a geographical area proximal to a wind park using a surveillance system for the detection of birds; on detecting the presence of birds in the vicinity of the wind park, automatically commanding the deployment of one or more drones to act as a deterrent to the detected birds.
Abstract:
A generator (5) for a wind turbine (1) is disclosed. The generator (5) comprises a rotor (3) configured to rotate about a rotational axis, and at least one stator (4) arranged next to the rotor (3). Each stator (4) comprises at least two subunits (8), the subunits (8) being arranged side-by-side along a moving direction of the rotor (3). Each subunit (8) comprises at least one flux-generating module (9) facing the rotor (3) but spaced therefrom, thereby defining an air gap between the rotor (3) and each flux-generating module (9). The subunits (8) are movable relative to each other along a direction which is substantially transverse to the moving direction of the rotor (3). This allows a subunit (8) to move in a manner which adjusts the air gap without affecting the position and the air gap of a neighbouring subunit (8). Thereby variations in the rotor (3) can be compensated and a uniform and constant air gap can be maintained. The invention further provides a wind turbine (1) comprising such a generator (5) and a method for performing service on a generator (5).
Abstract:
A method of handling a wind turbine component for assembly or maintenance, comprising moving one or more unmanned air vehicles to respective positions proximal to a wind turbine component so that the wind turbine component can be supported by the one or more unmanned air vehicles; and controlling the one or more unmanned air vehicles to lift the wind turbine component and manoeuvre said component with respect to a wind turbine. The invention extends to a system for handling a component of a wind turbine, comprising a plurality of unmanned air vehicles (UAVs); a UAV ground station computer system; and one or more lifting harnesses for carrying by the plurality of unmanned air vehicles.
Abstract:
A power supply system for at least one unmanned aerial vehicle (10) comprises a remote power supply (52) and a tethering system (70). The tethering system (70) comprises at least one umbilical cable (72) having a first end (82) connectable to an unmanned aerial vehicle (10) and a second end (84) operably connected to the remote power supply (52) for providing power to said unmanned aerial vehicle (10) via the umbilical cable (72) and a support arrangement (80) for supporting the second end (84) of the umbilical cable at a predetermined height (h1) above the ground.
Abstract:
A method of removing a wind turbine component includes assembling a transport system having a track, one or more support frames, and a carriage movably coupled to the track, the transport system having a first end positioned inside the tower and a second end positioned outside of the tower such that the track extends through an opening in the tower; raising the wind turbine component off of a platform located within the tower and above the door; moving at least part of the platform to allow the component to pass; lowering the wind turbine component onto the carriage; moving the carriage along the track from inside the tower to outside the tower; and removing the wind turbine component from the carriage. A transport system having a track, one or more support frames, and a carriage is also disclosed.
Abstract:
The invention relates to a wind energy converter (7) comprising a wind turbine (1), a wind turbine foundation (6) and temperature control means (10) for controlling the temperature of one or more areas (23) of the wind turbine (1). The temperature control means (10) including means for exchanging heat (16). The wind energy converter (7) is characterized in that the means for exchanging heat (16) is positioned in the ground (9) outside the foundation (6). Furthermore, the invention relates to a method for controlling the temperature of one or more areas (23) of a wind energy converter (7) and use thereof.
Abstract:
A wind turbine tower having a lower wind turbine tower member and an upper wind turbine tower member. The upper wind turbine tower member has a hollow body with a flange formed at its lower end which projects radially inwardly. The flange has an engaging portion configured to engage with the lower wind turbine tower member, and a first overhanging portion configured to extend outwardly beyond the lower wind turbine tower member when the engaging portion of the flange and lower member are engaged. A plurality of first tension stay connectors are located at the first overhanging portion of the flange which are configured to enable a plurality of first tension stays to be secured to the wind turbine tower from within the hollow body.
Abstract:
A locking unit (24) for a rotor lock system (20) of a wind turbine (1), the locking unit (24) comprising:a locking shaft (34) that is slidably movable within a barrel (30) under the influence of an actuator (32); and an angular drive arrangement (48, 50) which is configured to enable angular movement of the locking shaft (34) about a longitudinal axis as the locking shaft (34) is moved linearly within the barrel (30) by the actuator (32).
Abstract:
A node structure (12, 14) for connecting two or more convergent members (16, 26) of a lattice frame to each other and to one or more other members of the lattice frame. The node structure (12, 14) comprises a pair of opposed spaced-apart faces (30) that are substantially planar and substantially parallel to each other. At least one pair of root formations (32) with respective central longitudinal axes define an interior angle between them, those axes diverging outwardly for alignment with respective members of the lattice frame and converging inwardly between the faces (30). An inner connecting wall (34) between the root formations (32) of the pair connects concave-curved inner edges (36) of the faces and extends in a concave curve around the interior angle to join the root formations (32) of that pair.
Abstract:
A wind turbine comprising a nacelle (1) is disclosed. The nacelle (1) accommodates at least a generator (3) and power electronics electrically interconnected between the generator (3) and a power grid. At least one power electronic component (10, 11, 12) is removably arranged in the nacelle (1) in a region positioned between a floor level of the nacelle (1) and a lower limiting surface, e.g. a bottom wall, of the nacelle (1). The space available in the interior parts of the nacelle (1) is thereby utilised to a greater extent than in prior art wind turbines, and replacement of a power electronic component (10, 11, 12) can be performed using ordinary lifting equipment. Furthermore, the risk of injury to maintenance personnel is reduced.