Abstract:
PROBLEM TO BE SOLVED: To provide a photodetector array that overcomes restriction on a conventional photodetector array so as to have improved performance. SOLUTION: The photodetector array includes a plurality of photodetectors formed by a high-resistivity/low-doping-concentration first semiconductor substrate and a low-resistivity/high-doping-concentration second semiconductor substrate. The first/second semiconductor substrates are directly bonded to each other by a silicon-to-silicon atomic bond at a bond interface, thereby configuring a sharp transition from the first substrate to the second substrate. A method of manufacturing the photodetector array is also configured. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
A method of manufacturing a "super junction device includes providing a semiconductor wafer having a plurality of dies (320a, 321a). A first plurality of trenches (323a) having a first orientation are formed in a first die (320a). A second plurality of trenches having a second orientation are formed in a second die (321a). The second orientation is different from the first orientation.
Abstract:
A method of manufacturing a super junction device includes providing a semiconductor wafer having at least one die (220a). At- least one first trench (222a) having a first orientation is formed in the at least one die. At least one second trench having a second orientation that is different from the first orientation is formed in the at least one die.
Abstract:
A high voltage superjunction MOSFET includes a semiconductor substrate and a semiconductor layer having columns of first and second conductivity. A buffer layer of the first conductivity is between the semiconductor substrate and semiconductor layer. A plug region of the second conductivity is formed at a semiconductor layer surface and extends to the columns. A source/drain region is formed at the semiconductor layer surface and is connected to the plug region. The source/drain region has a concentration of the first conductivity between about 1×1019 cm−3 and 1.5×1020 cm−3. A body region of the second conductivity is between the source/drain region and the first column and is connected to the plug region. A gate trench is formed in the semiconductor layer surface and extends toward the first column and has a trench gate electrode disposed therein. A dielectric layer separates the trench gate electrode from the first column.
Abstract:
Superjunction semiconductor devices having narrow surface layout of terminal structures and methods of manufacturing the devices are provided. The narrow surface layout of terminal structures is achieved, in part, by connecting a source electrode to a body contact region within a semiconductor substrate at a body contact interface comprising at least a first side of the body contact region other than a portion of a first main surface of the semiconductor substrate.
Abstract:
A semiconductor device includes unlined and sealed trenches and methods for forming the unlined and sealed trenches. More particularly, a superjunction semiconductor device includes unlined, and sealed trenches. The trench has sidewalls formed of the semiconductor material. The trench is sealed with a sealing material such that the trench is air-tight. First and second regions are separated by the trench. The first region may include a superjunction Schottky diode or MOSFET. In an alternative embodiment, a plurality of regions are separated by a plurality of unlined and sealed trenches.
Abstract:
A method of manufacturing a semiconductor device includes providing a semiconductor wafer and forming at least one first trench in the wafer having first and second sidewalls and a first orientation on the wafer. The first sidewall of the at least one first trench is implanted with a dopant of a first conductivity at a first implantation direction. The first sidewall of the at least one first trench is implanted with the dopant of the first conductivity at a second implantation direction. The second implantation direction is orthogonal to the first implantation direction. The first and second implantation directions are non-orthogonal to the first sidewall.
Abstract:
A method for manufacturing a photodiode array includes providing a semiconductor substrate having first and second main surfaces opposite to each other. The semiconductor substrate has a first layer of a first conductivity proximate the first main surface and a second layer of a second conductivity proximate the second main surface. A via is formed in the substrate which extends to a first depth position relative to the first main surface. The via has a first aspect ratio. Generally simultaneously with forming the via, an isolation trench is formed in the substrate spaced apart from the via which extends to a second depth position relative to the first main surface. The isolation trench has a second aspect ratio different from the first aspect ratio.
Abstract:
A photodetector array comprises a plurality of photodetectors formed by a high resistivity low doping concentration first semiconductor substrate and a low resistivity high doping concentration second semiconductor substrate. The first and second semiconductor substrates are directly bonded together with a silicon-to-silicon atomic bond at a bond interface, thereby providing a sharp transition from the first substrate to the second substrate. A method of making the photodetector array is also provided.
Abstract:
A method of manufacturing a semiconductor device includes providing a semiconductor substrate having first and second main surfaces opposite to each other, forming in the semiconductor substrate at least one trench of a predetermined geometric shape in the first main surface, lining the at least one trench with a dielectric material, filling the at least one trench with a conductive material, electrically connecting an electrical component to the conductive material of the at least one trench at the first main surface; and mounting a cap to the first main surface. The at least one trench extends to a first depth position D in the semiconductor substrate. The cap encloses at least a portion of the electrical component and the electrical connection between the electrical component and the conductive material.