-
公开(公告)号:CN118800456B
公开(公告)日:2025-03-04
申请号:CN202411277248.2
申请日:2024-09-12
Applicant: 中南大学
IPC: G16H50/30 , G06F40/295 , G16H50/20 , G16H50/70 , G06N5/022
Abstract: 本发明公开了一种疾病预测方法,具体是涉及到一种并发症预测方法、装置、电子设备及可读存储介质,方法包括:对用户数据进行预处理,得到原始特征,原始特征包括数值型特征和非数值型特征;基于预先构建的规则库,将数值型特征中的目标指标数值映射为目标范围类别,得到对应的指标范围型特征;基于预先构建的医学知识图谱,通过实体解析获得非数值型特征对应的实体知识表示向量和指标范围型特征对应的实体知识表示向量;将原始特征和上述实体知识表示向量输入预先训练的疾病智能预测模型,得到并发症预测结果。本发明在考虑检查检验结果等数值型特征背后的知识的基础上,将外部先验医学知识引入模型,提升了并发症预测效果。
-
公开(公告)号:CN118800456A
公开(公告)日:2024-10-18
申请号:CN202411277248.2
申请日:2024-09-12
Applicant: 中南大学
IPC: G16H50/30 , G06F40/295 , G16H50/20 , G16H50/70 , G06N5/022
Abstract: 本发明公开了一种疾病预测方法,具体是涉及到一种并发症预测方法、装置、电子设备及可读存储介质,方法包括:对用户数据进行预处理,得到原始特征,原始特征包括数值型特征和非数值型特征;基于预先构建的规则库,将数值型特征中的目标指标数值映射为目标范围类别,得到对应的指标范围型特征;基于预先构建的医学知识图谱,通过实体解析获得非数值型特征对应的实体知识表示向量和指标范围型特征对应的实体知识表示向量;将原始特征和上述实体知识表示向量输入预先训练的疾病智能预测模型,得到并发症预测结果。本发明在考虑检查检验结果等数值型特征背后的知识的基础上,将外部先验医学知识引入模型,提升了并发症预测效果。
-