一种基于深度强化学习DDPG算法的D2D用户资源分配方法

    公开(公告)号:CN109862610A

    公开(公告)日:2019-06-07

    申请号:CN201910013868.8

    申请日:2019-01-08

    Abstract: 本发明公开了一种基于深度强化学习DDPG算法的D2D用户资源分配方法,本发明利用蜂窝用户和D2D用户相关信息,利用深度强化学习方法获得了最优的D2D用户信道分配和发射功率联合优化策略,D2D用户通过选择合适的发射功率和分配信道,来降低对蜂窝用户的干扰,同时最大化自身的信息速率,在不影响蜂窝用户QoS的情况下实现了高效资源分配,提高了蜂窝网络的吞吐量,符合绿色通信的要求。DDPG算法有效解决D2D用户信道分配和功率控制的联合优化问题,不仅在一系列连续动作空间的优化中表现稳定,而且求得最优解所需要的时间步也远远少于DQN,与基于值函数的DRL方法相比,基于AC框架的深度策略梯度方法优化策略效率更高、求解速度更快。

    一种基于深度强化学习DDPG算法的D2D用户资源分配方法

    公开(公告)号:CN109862610B

    公开(公告)日:2020-07-10

    申请号:CN201910013868.8

    申请日:2019-01-08

    Abstract: 本发明公开了一种基于深度强化学习DDPG算法的D2D用户资源分配方法,本发明利用蜂窝用户和D2D用户相关信息,利用深度强化学习方法获得了最优的D2D用户信道分配和发射功率联合优化策略,D2D用户通过选择合适的发射功率和分配信道,来降低对蜂窝用户的干扰,同时最大化自身的信息速率,在不影响蜂窝用户QoS的情况下实现了高效资源分配,提高了蜂窝网络的吞吐量,符合绿色通信的要求。DDPG算法有效解决D2D用户信道分配和功率控制的联合优化问题,不仅在一系列连续动作空间的优化中表现稳定,而且求得最优解所需要的时间步也远远少于DQN,与基于值函数的DRL方法相比,基于AC框架的深度策略梯度方法优化策略效率更高、求解速度更快。

Patent Agency Ranking