一种利用长短期记忆网络的光伏发电功率预测方法

    公开(公告)号:CN108280551B

    公开(公告)日:2022-07-26

    申请号:CN201810106023.9

    申请日:2018-02-02

    Abstract: 本发明公开了属于光伏发电功率预测技术领域的一种利用长短期记忆网络的光伏发电功率预测方法。利用长短期记忆网络的光伏发电功率参数构建长短期记忆网络预测模型:搭建具有包含若干个神经元的隐藏层的长短期记忆网络,利用相关的五维特征向量:积日、环境温度、环境湿度、风速和太阳辐照度和以次日预测点前30天每天24个整点时刻的光伏功率值和天气数据作为原始数据,将这五维向量组成输入矩阵,输入到长短期记忆网络,进行预测点的功率预测;相对于所有的预测方法,本发明将当前时刻的光伏功率变化和以前光伏功率的变化之间建立了联系,实现了时间序列数据的动态建模,能更加充分的反映光伏功率的变化规律,实现更为精确的光伏功率预测。

    一种利用长短期记忆网络的光伏发电功率预测方法

    公开(公告)号:CN108280551A

    公开(公告)日:2018-07-13

    申请号:CN201810106023.9

    申请日:2018-02-02

    Abstract: 本发明公开了属于光伏发电功率预测技术领域的一种利用长短期记忆网络的光伏发电功率预测方法。利用长短期记忆网络的光伏发电功率参数构建长短期记忆网络预测模型:搭建具有包含若干个神经元的隐藏层的长短期记忆网络,利用相关的五维特征向量:积日、环境温度、环境湿度、风速和太阳辐照度和以次日预测点前30天每天24个整点时刻的光伏功率值和天气数据作为原始数据,将这五维向量组成输入矩阵,输入到长短期记忆网络,进行预测点的功率预测;相对于所有的预测方法,本发明将当前时刻的光伏功率变化和以前光伏功率的变化之间建立了联系,实现了时间序列数据的动态建模,能更加充分的反映光伏功率的变化规律,实现更为精确的光伏功率预测。

Patent Agency Ranking