基于深度学习的场所流量控制方法、系统及可读介质

    公开(公告)号:CN115796287A

    公开(公告)日:2023-03-14

    申请号:CN202211226943.7

    申请日:2022-10-09

    Applicant: 厦门大学

    Abstract: 本发明公开了一种基于深度学习的场所流量控制方法、系统及可读介质,通过获取人员数据、场所数据和办公数据,根据人员数据确定对应的空间因素、移动因素和健康因素,并基于空间因素、移动因素和健康因素构建雷达图,根据雷达图确定人员的健康状态评分;根据场所数据的历史流量数据采用经训练的LSTNet模型预测得到未来对应时刻的流量数据,并结合实际流量数据确定场所的负载状况;根据人员的健康状态评分、场所的负载状况和办公数据确定该人员进入该场所的权限;根据人员的健康状态评分、场所的负载状况通过排队论模型计算出该人员进入该场所的排队平均等待时间,该方法具有更细的细粒度,提供人员等待时长,避免人员拥挤,有利于场所内人流量的管控。

Patent Agency Ranking