基于可变形快速卷积神经网络的舰船检测方法

    公开(公告)号:CN109299688B

    公开(公告)日:2021-10-01

    申请号:CN201811094792.8

    申请日:2018-09-19

    Applicant: 厦门大学

    Abstract: 基于可变形快速卷积神经网络的舰船检测方法,涉及图像处理。检测方法包括模型训练阶段和舰船检测阶段。可用于民用领域,代替人工实时地对特定港口、港湾、海域对船只进行分类检测,可用于视频监控或图像中的船只检测,也可以对军事港口进行船只检测监控,能及早发现军事情报,为我方军事指挥提供作战依据,掌握战场主动权。通过对兼顾速度和准确度的端到端方法Faster R‑CNN的改进,根据舰船目标的特有性质,对Faster R‑CNN基础网络、RoI‑wise子网络和损失函数进行修改,得到可变形快速卷积神经网络的检测网络的模型结构,实验结果显示,比原Faster R‑CNN方法具有更好的检测速度和精度。

    基于可变形快速卷积神经网络的舰船检测方法

    公开(公告)号:CN109299688A

    公开(公告)日:2019-02-01

    申请号:CN201811094792.8

    申请日:2018-09-19

    Applicant: 厦门大学

    Abstract: 基于可变形快速卷积神经网络的舰船检测方法,涉及图像处理。检测方法包括模型训练阶段和舰船检测阶段。可用于民用领域,代替人工实时地对特定港口、港湾、海域对船只进行分类检测,可用于视频监控或图像中的船只检测,也可以对军事港口进行船只检测监控,能及早发现军事情报,为我方军事指挥提供作战依据,掌握战场主动权。通过对兼顾速度和准确度的端到端方法Faster R-CNN的改进,根据舰船目标的特有性质,对Faster R-CNN基础网络、RoI-wise子网络和损失函数进行修改,得到可变形快速卷积神经网络的检测网络的模型结构,实验结果显示,比原Faster R-CNN方法具有更好的检测速度和精度。

Patent Agency Ranking