-
公开(公告)号:CN108320051B
公开(公告)日:2021-11-23
申请号:CN201810044018.X
申请日:2018-01-17
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种基于GRU网络模型的移动机器人动态避碰规划方法,属于移动机器人导航领域;本发明是一种基于深度学习网络的避碰算法,通过对传感器的数据进行前期归一化处理然后输入到GRU网络模型中,通过输入层将数据传输到隐藏层,通过隐藏层GRU模块单元对数据进行处理,将处理后的数据输出到输出层,得到下一时刻移动机器人在全局坐标系中的方向θ和速度v;该算法作用下机器人利用简单的感知设备,便可以具有高智能的动态规划水平,在保证安全的前提下,使移动机器人的反应速度优于传统避碰算法。
-
公开(公告)号:CN108320051A
公开(公告)日:2018-07-24
申请号:CN201810044018.X
申请日:2018-01-17
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种基于GRU网络模型的移动机器人动态避碰规划方法,属于移动机器人导航领域;本发明是一种基于深度学习网络的避碰算法,通过对传感器的数据进行前期归一化处理然后输入到GRU网络模型中,通过输入层将数据传输到隐藏层,通过隐藏层GRU模块单元对数据进行处理,将处理后的数据输出到输出层,得到下一时刻移动机器人在全局坐标系中的方向θ和速度v;该算法作用下机器人利用简单的感知设备,便可以具有高智能的动态规划水平,在保证安全的前提下,使移动机器人的反应速度优于传统避碰算法。
-
公开(公告)号:CN108334677A
公开(公告)日:2018-07-27
申请号:CN201810052628.4
申请日:2018-01-17
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种基于GRU网络的UUV实时避碰规划方法,属于水下航行器避障领域。本发明包括:将UUV布放在起始位置;仿真声纳开始获取UUV当前位置的环境信息;将仿真声纳获取的环境信息输入到GRU网络,获得下一时刻UUV转艏及速度的调整指令;UUV执行运动指令,到达下一路径点;判断UUV是否到达目标点,若是则避碰规划器停止工作。本发明利用GRU强大的拟合长时间序列的能力,解决了UUV实时避碰规划的问题,克服了现有的实时避碰规划方法存在环境模型的精度与规划的实时性之间的矛盾,实现了一个简单、高效、易于实现的端到端的实时避碰规划器。
-
公开(公告)号:CN108334677B
公开(公告)日:2021-06-11
申请号:CN201810052628.4
申请日:2018-01-17
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种基于GRU网络的UUV实时避碰规划方法,属于水下航行器避障领域。本发明包括:将UUV布放在起始位置;仿真声纳开始获取UUV当前位置的环境信息;将仿真声纳获取的环境信息输入到GRU网络,获得下一时刻UUV转艏及速度的调整指令;UUV执行运动指令,到达下一路径点;判断UUV是否到达目标点,若是则避碰规划器停止工作。本发明利用GRU强大的拟合长时间序列的能力,解决了UUV实时避碰规划的问题,克服了现有的实时避碰规划方法存在环境模型的精度与规划的实时性之间的矛盾,实现了一个简单、高效、易于实现的端到端的实时避碰规划器。
-
-
-