基于RBF辨识的ICA-CMAC神经网络的欠驱动无人艇航迹跟踪控制方法

    公开(公告)号:CN107255923B

    公开(公告)日:2020-04-03

    申请号:CN201710447546.5

    申请日:2017-06-14

    Abstract: 本发明提供的是一种基于RBF辨识的ICA‑CMAC神经网络的欠驱动无人艇航迹跟踪控制方法。首先用位置参考系统、姿态参考系统测得USV位置信息和艏向姿态信息,对获取的USV姿态及位置信号进行滤波及时空对准,得到当前USV精确位置及姿态;然后采用ICA‑CMAC神经网络与积分分离式PID并行控制方法;ICA‑CMAC神经网络实现前馈控制,通过引入平衡学习常数进行可信度分配,根据调整指标和σ学习规则辨识USV逆模型,产生的输出作为USV输入的一部分;最后得到包括PID控制器和ICA‑CMAC神经网络的控制器总控制输出。本发明解决不确定外界干扰下USV航迹跟踪控制问题,所提方法降低对精确数学模型的依赖性,增强系统的自适应调整能力和抗干扰能力,提高算法的在线学习速度和航迹跟踪精度。

    基于RBF辨识的ICA‑CMAC神经网络的欠驱动无人艇航迹跟踪控制方法

    公开(公告)号:CN107255923A

    公开(公告)日:2017-10-17

    申请号:CN201710447546.5

    申请日:2017-06-14

    Abstract: 本发明提供的是一种基于RBF辨识的ICA‑CMAC神经网络的欠驱动无人艇航迹跟踪控制方法。首先用位置参考系统、姿态参考系统测得USV位置信息和艏向姿态信息,对获取的USV姿态及位置信号进行滤波及时空对准,得到当前USV精确位置及姿态;然后采用ICA‑CMAC神经网络与积分分离式PID并行控制方法;ICA‑CMAC神经网络实现前馈控制,通过引入平衡学习常数进行可信度分配,根据调整指标和σ学习规则辨识USV逆模型,产生的输出作为USV输入的一部分;最后得到包括PID控制器和ICA‑CMAC神经网络的控制器总控制输出。本发明解决不确定外界干扰下USV航迹跟踪控制问题,所提方法降低对精确数学模型的依赖性,增强系统的自适应调整能力和抗干扰能力,提高算法的在线学习速度和航迹跟踪精度。

Patent Agency Ranking