一种基于贝叶斯递推滤波的重力辅助捷联惯性导航方法

    公开(公告)号:CN103900567B

    公开(公告)日:2017-01-25

    申请号:CN201410083235.1

    申请日:2014-03-08

    Abstract: 本发明提供的是一种基于贝叶斯递推滤波的重力辅助捷联惯性导航方法。在捷联惯性导航系统中,在不加修正的条件下,捷联惯性导航系统解算的经度误差随着时间发散。为了抑制系统误差的发散,且不破坏捷联惯性导航系统隐蔽性的前提下,本发明提出了一种基于贝叶斯递推滤波的重力辅助捷联惯性导航方法。在获得量测信息后,将状态变量的先验概率密度,利用贝叶斯定律求取状态变量的后验概率密度,从而获得状态变量的全局最优解。在获得状态变量全局最优解之后,利用其对捷联惯性导航系统的位置误差进行修正,从而达到提高系统定位精度的目的。

    一种用于捷联惯性/北斗卫星组合导航系统的自适应滤波方法

    公开(公告)号:CN103389506B

    公开(公告)日:2016-08-10

    申请号:CN201310313646.0

    申请日:2013-07-24

    Abstract: 本发明公开了一种用于捷联惯性/北斗卫星组合导航系统的自适应滤波方法,其目的是改善由于系统噪声统计先验信息未知或者时变情况下导致常规卡尔曼滤波发散的问题,并提高捷联惯性/北斗卫星组合导航系统的定位精度。该方法通过引入关于新息协方差的衰减记忆平滑器,并基于该衰减平滑器对滤波器中的增益矩阵和系统噪声统计协方差进行在线估计与修正,能够根据新近新息序列的变化自适应地调节增益矩阵,进而达到改善滤波精度的目的。本发明所设计的自适应滤波方法用于捷联惯性/北斗卫星组合导航系统中,能够准确估计出系统的状态,而且经过输出补偿后能够解算出更加精确的姿态、速度和位置信息。

    一种惯性导航系统极区模式横地理纬度初始值的测量方法

    公开(公告)号:CN103411610A

    公开(公告)日:2013-11-27

    申请号:CN201310321534.X

    申请日:2013-07-29

    Abstract: 本发明公开了一种惯性导航系统极区模式横地理纬度初始值的测量方法,包括以下步骤:采集惯性导航系统正常模式输出的经度信息和地理纬度信息;利用惯性导航系统所在位置的地理纬度,测量地心纬度信息;利用惯性导航系统输出的经度、地心纬度,测量横地心纬度;利用惯性导航系统输出的经度、地心纬度、横地心纬度,测量横经度;根据得到的横地心纬度、横经度,测量横地理纬度。本发明提出的横地理纬度测量方法,是以椭球模型描述地球时,利用正常模式下的位置参数测量极区模式所需的横纬度信息,测量精度高,可以满足高精度的惯性导航极区导航需要,填补了横坐标系下横地理纬度测量方法的空白。

    一种用于捷联惯性/北斗卫星组合导航系统的自适应滤波方法

    公开(公告)号:CN103389506A

    公开(公告)日:2013-11-13

    申请号:CN201310313646.0

    申请日:2013-07-24

    Abstract: 本发明公开了一种用于捷联惯性/北斗卫星组合导航系统的自适应滤波方法,其目的是改善由于系统噪声统计先验信息未知或者时变情况下导致常规卡尔曼滤波发散的问题,并提高捷联惯性/北斗卫星组合导航系统的定位精度。该方法通过引入关于新息协方差的衰减记忆平滑器,并基于该衰减平滑器对滤波器中的增益矩阵和系统噪声统计协方差进行在线估计与修正,能够根据新近新息序列的变化自适应地调节增益矩阵,进而达到改善滤波精度的目的。本发明所设计的自适应滤波方法用于捷联惯性/北斗卫星组合导航系统中,能够准确估计出系统的状态,而且经过输出补偿后能够解算出更加精确的姿态、速度和位置信息。

    一种惯性导航系统横子午线曲率半径的测量方法

    公开(公告)号:CN103389096A

    公开(公告)日:2013-11-13

    申请号:CN201310322323.8

    申请日:2013-07-29

    Abstract: 本发明公开了一种惯性导航系统横子午线曲率半径的测量方法,包括以下步骤:采集惯性导航系统极区模式输出的位置数据;测量横地心纬度;测量惯导系统所在横经线与横赤道面的交点与地心的距离;测量惯性导航系统与横赤道面的距离;测量横子午面曲率半径。本发明基于地球椭球模型下,利用惯性导航系统极区模式输出的位置即可测量得到横子午面曲率半径,从原理上减小了地球模型不准确造成的测量误差,提高了导航精度,同时,测量方法简单方便,便于实际应用。本发明填补了横坐标系下地球的横子午面曲率半径测量方法的空白,解决了横坐标系参考框架下惯性导航系统机械编排的计算问题,从而解决了惯性导航系统极区导航问题。

    一种基于贝叶斯递推滤波的重力辅助捷联惯性导航方法

    公开(公告)号:CN103900567A

    公开(公告)日:2014-07-02

    申请号:CN201410083235.1

    申请日:2014-03-08

    CPC classification number: G01C21/165 G01C21/20

    Abstract: 本发明提供的是一种基于贝叶斯递推滤波的重力辅助捷联惯性导航方法。在捷联惯性导航系统中,在不加修正的条件下,捷联惯性导航系统解算的经度误差随着时间发散。为了抑制系统误差的发散,且不破坏捷联惯性导航系统隐蔽性的前提下,本发明提出了一种基于贝叶斯递推滤波的重力辅助捷联惯性导航方法。在获得量测信息后,将状态变量的先验概率密度,利用贝叶斯定律求取状态变量的后验概率密度,从而获得状态变量的全局最优解。在获得状态变量全局最优解之后,利用其对捷联惯性导航系统的位置误差进行修正,从而达到提高系统定位精度的目的。

    微惯导与DGPS和电子罗盘组合导航姿态测量方法

    公开(公告)号:CN103900569B

    公开(公告)日:2017-01-25

    申请号:CN201410121059.6

    申请日:2014-03-28

    Abstract: 本发明提供的是一种微惯导与DGPS和电子罗盘组合导航姿态测量方法。首先利用微惯导、电子罗盘对组合系统进行初始对准,得到载体坐标系b到导航坐标系n的初始姿态矩阵;进而可以计算出载体的初始姿态值;利用微惯导系统的位置、速度、姿态及惯性传感器的误差方程,建立扩展卡尔曼滤波器的状态方程;利用电子罗盘和GPS分别建立的观测方程组成扩展卡尔曼滤波器的观测方程;利用扩展卡尔曼滤波器进行实时估测微惯导系统姿态误差;利用得到的姿态误差进行修正姿态矩阵,并计算出微惯导系统新的姿态值。本发明的方法是利用电子罗盘和GPS辅助微惯导系统来提高导航姿态精度的方法。

    一种改进的捷联惯性导航系统快速阻尼方法

    公开(公告)号:CN103900568B

    公开(公告)日:2016-06-29

    申请号:CN201410083250.6

    申请日:2014-03-08

    Abstract: 本发明提供的是一种改进的捷联惯性导航系统快速阻尼方法。在捷联惯性导航系统进入阻尼工作状态后,进行正常的捷联惯性导航解算,并将陀螺仪和加速度计的输出进行存储。利用存储的陀螺仪和加速度计的输出序列进行循环解算,在每次逆向解算结束时,利用进入阻尼工作状态时位置的值对下次正向解算的位置初值进行修正。当循环次数达到预定值之后,结束捷联惯性导航系统结束循环解算,继续利用陀螺仪和加速度计的实时输出进行实时解算。由于在阻尼中引入了循环算法,并且每次正向解算的位置初值都进行一次修正。本发明的方法既可以缩短阻尼系统的调节时间,又可以避免位置误差在循环算法中累计,提高了定位精度。

    微惯导与DGPS和电子罗盘组合导航姿态测量方法

    公开(公告)号:CN103900569A

    公开(公告)日:2014-07-02

    申请号:CN201410121059.6

    申请日:2014-03-28

    CPC classification number: G01C21/165 G01C25/005 G01S19/49

    Abstract: 本发明提供的是一种微惯导与DGPS和电子罗盘组合导航姿态测量方法。首先利用微惯导、电子罗盘对组合系统进行初始对准,得到载体坐标系b到导航坐标系n的初始姿态矩阵;进而可以计算出载体的初始姿态值;利用微惯导系统的位置、速度、姿态及惯性传感器的误差方程,建立扩展卡尔曼滤波器的状态方程;利用电子罗盘和GPS分别建立的观测方程组成扩展卡尔曼滤波器的观测方程;利用扩展卡尔曼滤波器进行实时估测微惯导系统姿态误差;利用得到的姿态误差进行修正姿态矩阵,并计算出微惯导系统新的姿态值。本发明的方法是利用电子罗盘和GPS辅助微惯导系统来提高导航姿态精度的方法。

    一种双差GPS/SINS组合导航姿态测量方法

    公开(公告)号:CN103454665A

    公开(公告)日:2013-12-18

    申请号:CN201310375492.8

    申请日:2013-08-26

    Abstract: 本发明公开了一种双差GPS/SINS组合导航姿态测量方法,首先进行捷联捷联惯导系统的初始对准,可以得到载体坐标系b到导航坐标系n的初始姿态矩阵;进而可以计算出载体的初始姿态值;利用捷联惯导系统的位置、速度、姿态及惯性传感器的误差方程,建立扩展卡尔曼滤波器的状态方程;利用计算得到载波相位误差δφ和多普勒速度误差δD建立扩展卡尔曼滤波器的观测方程;利用扩展卡尔曼滤波器进行实时估测捷联惯导系统姿态误差;利用得到的姿态误差进行修正姿态矩阵,并计算出捷联惯导系统新的姿态值。本发明的方法是在不需要计算整周模糊度,并且只需要一个GPS接收机的情况下进行载体姿态的确定,在不降低导航过程中姿态测量精度的条件下减少了计算量和系统的成本。

Patent Agency Ranking