-
公开(公告)号:CN105893481A
公开(公告)日:2016-08-24
申请号:CN201610187149.4
申请日:2016-03-29
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F17/30
Abstract: 本发明提供一种基于马尔可夫聚类的实体间关系消解方法,包括:计算K个实体中任意两个实体之间的语义相似度;根据实体间的语义相似度构造赋权图G;构造状态转移矩阵M;在状态转移矩阵M上执行马尔科夫聚类算法,得到多个关系簇;其中,每个簇代表一系列语义相近似的实体。本发明提供的基于马尔可夫聚类的实体间关系消解方法具有以下优点:提出了融合词法和语义的相似度计算方法,然后给出了基于马尔科夫图聚类的关系聚类方法。该方法与层次聚类方法相比,聚类纯度指标有了一定提高,还具有计算过程简单快速的优点。
-
公开(公告)号:CN105893481B
公开(公告)日:2019-01-29
申请号:CN201610187149.4
申请日:2016-03-29
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明提供一种基于马尔可夫聚类的实体间关系消解方法,包括:计算K个实体中任意两个实体之间的语义相似度;根据实体间的语义相似度构造赋权图G;构造状态转移矩阵M;在状态转移矩阵M上执行马尔科夫聚类算法,得到多个关系簇;其中,每个簇代表一系列语义相近似的实体。本发明提供的基于马尔可夫聚类的实体间关系消解方法具有以下优点:提出了融合词法和语义的相似度计算方法,然后给出了基于马尔科夫图聚类的关系聚类方法。该方法与层次聚类方法相比,聚类纯度指标有了一定提高,还具有计算过程简单快速的优点。
-
公开(公告)号:CN105808525B
公开(公告)日:2018-06-29
申请号:CN201610186810.X
申请日:2016-03-29
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F17/27
Abstract: 本发明提供一种基于相似概念对的领域概念上下位关系抽取方法,包括以下步骤:步骤1,领域概念集合由若干个领域概念组成;基于概念聚类的方法从领域概念集合中抽取相似的领域概念;步骤2,获得可能存在上下位关系的候选概念对,然后根据步骤1获取的相似概念产生相似候选概念对;步骤3,利用知识库获取部分训练数据,并通过相似候选概念对共同表征关系特征,实现基于多句特征的关系抽取,从而抽取到领域概念上下位关系。优点为:本发明可以突破语料规模的限制,利用多句特征抽取领域概念的上下位关系,可提升领域概念上下位关系抽取的准确率。
-
公开(公告)号:CN105808525A
公开(公告)日:2016-07-27
申请号:CN201610186810.X
申请日:2016-03-29
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F17/27
CPC classification number: G06F17/271 , G06F17/2705 , G06F17/274 , G06F17/2785
Abstract: 本发明提供一种基于相似概念对的领域概念上下位关系抽取方法,包括以下步骤:步骤1,领域概念集合由若干个领域概念组成;基于概念聚类的方法从领域概念集合中抽取相似的领域概念;步骤2,获得可能存在上下位关系的候选概念对,然后根据步骤1获取的相似概念产生相似候选概念对;步骤3,利用知识库获取部分训练数据,并通过相似候选概念对共同表征关系特征,实现基于多句特征的关系抽取,从而抽取到领域概念上下位关系。优点为:本发明可以突破语料规模的限制,利用多句特征抽取领域概念的上下位关系,可提升领域概念上下位关系抽取的准确率。
-
-
-