深层神经网络的辨别预训练

    公开(公告)号:CN103049792A

    公开(公告)日:2013-04-17

    申请号:CN201210488501.X

    申请日:2012-11-26

    Applicant: 微软公司

    CPC classification number: G06N3/08 G06N3/04

    Abstract: 本发明公开了深层神经网络的辨别预训练。提出了预训练深层神经网络(DNN)的隐层的辨别预训练技术实施例。大体上,首先利用误差反向传播(BP)使用标签来辨别地训练单隐层神经网络。然后,在丢弃之前的单隐层神经网络的输出层之后,连同新输出层在之前训练的隐层的顶上添加另一随机初始化的隐层,所述新输出层表示分类或识别的目标。然后利用同一策略辨别地训练作为结果产生的多隐层DNN等等,直到达到期望数量的隐层。这产生了预训练的DNN。所述辨别预训练技术实施例具有如下的优点:使得DNN层权重接近良好的局部最优,而仍使其留在具有高梯度的范围内,从而能够有效地对其进行微调。

Patent Agency Ranking