-
公开(公告)号:CN114066232A
公开(公告)日:2022-02-18
申请号:CN202111349982.1
申请日:2021-11-15
Applicant: 内蒙古北方重工业集团有限公司 , 暨南大学 , 内蒙古工业大学
Abstract: 本发明属于工业物联网技术领域,公开了基于分布式强化学习和边缘计算的工厂调度方法及系统。所述系统包括本地动作模型、边缘设备、云端数据存储器和云端策略模型。方法为:初始化本地动作模型和边缘设备;本地动作模型实时生成适配不同流水线的调度规则;边缘设备对实时产生的生产信息进行编码,生成两参数元组和五参数元组分别发送至本地动作模型和云端数据存储器;云端策略模型对云端存储的数据进行优先级采样、重要性排序和更新;同步云端策略模型和本地动作模型。本发明将边缘计算与分布式强化学习算法结合应用于工业生产,实现了数据实时传输和工业生产实时调度,并通过本地设备与云端设备的交互,不断提高模型准确性,优化工业生产效率。
-
公开(公告)号:CN114186749A
公开(公告)日:2022-03-15
申请号:CN202111546245.0
申请日:2021-12-16
Applicant: 暨南大学
Abstract: 本发明提供了一种基于强化学习及遗传算法的柔性车间调度方法及模型,属于人工智能技术领域。根据柔性作业车间的特点,建立柔性作业车间调度模型;对遗传算法和基于熵的置信域优化强化学习算法中的基本参数进行初始化;利用基于熵的置信域优化算法更新遗传算法中的参数,并分别对参与交叉和变异的染色体种群进行交叉和变异操作,生成参与交叉和变异的新染色体种群;计算新种群中每个个体的适应度,确定基于熵的置信域优化算法中的状态参数,对新染色体种群执行遗传算法操作;反复执行上述迭代至截止,并输出结果。本发明将基于熵的置信域优化强化学习算法与遗传算法相结合,提高了柔性车间调度的性能,增强车间生产的鲁棒性,提高生产效率。
-
公开(公告)号:CN114066232B
公开(公告)日:2022-07-22
申请号:CN202111349982.1
申请日:2021-11-15
Applicant: 内蒙古北方重工业集团有限公司 , 暨南大学 , 内蒙古工业大学
Abstract: 本发明属于工业物联网技术领域,公开了基于分布式强化学习和边缘计算的工厂调度方法及系统。所述系统包括本地动作模型、边缘设备、云端数据存储器和云端策略模型。方法为:初始化本地动作模型和边缘设备;本地动作模型实时生成适配不同流水线的调度规则;边缘设备对实时产生的生产信息进行编码,生成两参数元组和五参数元组分别发送至本地动作模型和云端数据存储器;云端策略模型对云端存储的数据进行优先级采样、重要性排序和更新;同步云端策略模型和本地动作模型。本发明将边缘计算与分布式强化学习算法结合应用于工业生产,实现了数据实时传输和工业生产实时调度,并通过本地设备与云端设备的交互,不断提高模型准确性,优化工业生产效率。
-
公开(公告)号:CN114186749B
公开(公告)日:2022-06-28
申请号:CN202111546245.0
申请日:2021-12-16
Applicant: 暨南大学
Abstract: 本发明提供了一种基于强化学习及遗传算法的柔性车间调度方法及模型,属于人工智能技术领域。根据柔性作业车间的特点,建立柔性作业车间调度模型;对遗传算法和基于熵的置信域优化强化学习算法中的基本参数进行初始化;利用基于熵的置信域优化算法更新遗传算法中的参数,并分别对参与交叉和变异的染色体种群进行交叉和变异操作,生成参与交叉和变异的新染色体种群;计算新种群中每个个体的适应度,确定基于熵的置信域优化算法中的状态参数,对新染色体种群执行遗传算法操作;反复执行上述迭代至截止,并输出结果。本发明将基于熵的置信域优化强化学习算法与遗传算法相结合,提高了柔性车间调度的性能,增强车间生产的鲁棒性,提高生产效率。
-
-
-