-
公开(公告)号:CN108509775B
公开(公告)日:2020-11-13
申请号:CN201810128524.7
申请日:2018-02-08
Applicant: 暨南大学
Abstract: 本发明提出了基于机器学习的恶意PNG图像识别方法,属于网络空间安全技术领域,首先建立PNG图像特征库和数字隐写识别模型;在服务端对上传图片文件请求进行审查,依据PNG图像特征库进行特征匹配识别,初步识别PNG图片是否合法,若合法则调用数字隐写识别模型挖掘PNG图片是否存在信息隐藏,若不合法或存在信息隐藏则拒绝上传;在客户端监测网页传输过程中的PNG图片格式文件数据,依据PNG图像特征库进行特征匹配识别,若合法则调用数字隐写识别模型挖掘PNG图片是否存在信息隐藏,若不合法或存在信息隐藏则禁止访问该图片资源。本发明可以在服务端禁止不合法图片的上传,在客户端禁止对不合法图片的访问,加强了网络安全。
-
公开(公告)号:CN108509775A
公开(公告)日:2018-09-07
申请号:CN201810128524.7
申请日:2018-02-08
Applicant: 暨南大学
Abstract: 本发明提出了基于机器学习的恶意PNG图像识别方法,属于网络空间安全技术领域,首先建立PNG图像特征库和数字隐写识别模型;在服务端对上传图片文件请求进行审查,依据PNG图像特征库进行特征匹配识别,初步识别PNG图片是否合法,若合法则调用数字隐写识别模型挖掘PNG图片是否存在信息隐藏,若不合法或存在信息隐藏则拒绝上传;在客户端监测网页传输过程中的PNG图片格式文件数据,依据PNG图像特征库进行特征匹配识别,若合法则调用数字隐写识别模型挖掘PNG图片是否存在信息隐藏,若不合法或存在信息隐藏则禁止访问该图片资源。本发明可以在服务端禁止不合法图片的上传,在客户端禁止对不合法图片的访问,加强了网络安全。
-