打钻过程中煤基复合封孔材料实时制备与封孔装置及方法

    公开(公告)号:CN115559685B

    公开(公告)日:2023-06-30

    申请号:CN202211286242.2

    申请日:2022-10-20

    Abstract: 本发明属于煤矿井下瓦斯抽采钻孔封孔材料开发与装备技术领域,尤其涉及一种打钻过程中煤基复合封孔材料实时制备与封孔装置及方法,包括煤屑产生系统,与煤屑产生系统出口相连的煤屑分离系统,与煤屑分离系统相连的煤基复合材料制备系统,以及与煤基复合材料制备系统相连的煤基复合材料封孔系统,通过各项分系统的分工合作,煤屑产生系统制造煤屑颗粒、煤屑分离系统筛分理想化粒径的煤屑颗粒、煤基复合材料制备系统开发封孔材料浆液和煤基复合材料封孔系统实时封堵钻孔,为打钻过程产生的煤屑颗粒二次利用提供途径参考,煤矿封孔材料的开发提供合理的思路,封孔系统与技术提供新的使用技术方法,从而提高煤层瓦斯的抽放效率。

    一种基于抽采孔不同深度内的定点瓦斯抽采装置及方法

    公开(公告)号:CN115853469B

    公开(公告)日:2023-06-13

    申请号:CN202211706901.3

    申请日:2022-12-29

    Abstract: 本发明公开了基于抽采孔不同深度内的定点瓦斯抽采装置及方法,属于煤层瓦斯抽采钻孔封孔领域,该装置主要由定位系统、封孔抽采系统和输送系统组成,其中输送系统和抽采系统相互结合,从而实现不同深度内的瓦斯抽采。该方法主要凭借输送装置的灵活性,通过灵活移动固定抽采管的膨胀器,可以实现在抽采孔内自由移动抽采管,同时输送系统中设有红外线测距仪,来控制不同深度的瓦斯抽采。通过输送系统和抽采系统相互结合,实现了抽采孔内不同深度范围内的瓦斯抽采,提高了抽采孔内的瓦斯提取效率,同时不仅能测定不同煤层中瓦斯浓度的分布情况及其规律,而且对于矿山钻孔瓦斯增透和瓦斯提浓技术提供了依据。

    一种基于抽采孔不同深度内的定点瓦斯抽采装置及方法

    公开(公告)号:CN115853469A

    公开(公告)日:2023-03-28

    申请号:CN202211706901.3

    申请日:2022-12-29

    Abstract: 本发明公开了基于抽采孔不同深度内的定点瓦斯抽采装置及方法,属于煤层瓦斯抽采钻孔封孔领域,该装置主要由定位系统、封孔抽采系统和输送系统组成,其中输送系统和抽采系统相互结合,从而实现不同深度内的瓦斯抽采。该方法主要凭借输送装置的灵活性,通过灵活移动固定抽采管的膨胀器,可以实现在抽采孔内自由移动抽采管,同时输送系统中设有红外线测距仪,来控制不同深度的瓦斯抽采。通过输送系统和抽采系统相互结合,实现了抽采孔内不同深度范围内的瓦斯抽采,提高了抽采孔内的瓦斯提取效率,同时不仅能测定不同煤层中瓦斯浓度的分布情况及其规律,而且对于矿山钻孔瓦斯增透和瓦斯提浓技术提供了依据。

    超声波二次冲击下压抽一体化的瓦斯提浓装置及提浓方法

    公开(公告)号:CN115573764A

    公开(公告)日:2023-01-06

    申请号:CN202211473617.6

    申请日:2022-11-23

    Abstract: 本发明属于煤矿钻孔瓦斯抽采强化技术领域,尤其涉及一种超声波二次冲击下压抽一体化的瓦斯提浓装置及提浓方法,包括位于增透钻孔内的液态CO2致裂系统、提浓抽采系统和超声波二次冲击系统,增透钻孔位于煤层内,煤层顶板和增透钻孔之间设有一条补偿空间,补偿空间的长度大于增透钻孔的深度,增透钻孔底部设有煤层底板,本发明采用压抽一体化的增透方式,大大减少了钻孔数量,采用的提浓机构提高了瓦斯的抽采浓度,同时设计的新型止飞器可以有效地减少抽采管和致裂管在高压冲击下沿轴向运动产生的“飞管”现象,而且所用装置操作简便、易于上手,同时成本低廉、更适合于钻孔煤矿井下的瓦斯增透抽采工作。

    基于硬岩隧道静态水力裂切的分裂器及裂切方法

    公开(公告)号:CN115573734A

    公开(公告)日:2023-01-06

    申请号:CN202211477658.2

    申请日:2022-11-23

    Abstract: 本发明属于隧道掘进设备与施工技术领域,尤其涉及一种基于硬岩隧道静态水力裂切的分裂器及裂切方法,包括油箱,电机,上、下压裂缸体,上、下压裂缸体两端分别通过固定伸缩件连接,上、下压裂缸体中部通过多个液压伸缩件连接,液压伸缩件通过高压油管与油箱连通;固定伸缩件包括螺栓,套设于螺杆上的弹簧以及螺母,螺杆穿过上、下压裂缸体的螺孔并位于沉孔内,上沉孔的螺杆端部套有弹簧并由螺母限位,弹簧的内径大于上压裂缸体上螺孔的外径,本发明解决巷道超挖、欠挖的成形问题;静态压裂避免粉尘产生,节省时间成本;岩石回收利用率高;上部、周边围岩松动区域小,安全性能好,对后期支护,喷浆的工作效率有显著的提升。

    打钻过程中煤基复合封孔材料实时制备与封孔装置及方法

    公开(公告)号:CN115559685A

    公开(公告)日:2023-01-03

    申请号:CN202211286242.2

    申请日:2022-10-20

    Abstract: 本发明属于煤矿井下瓦斯抽采钻孔封孔材料开发与装备技术领域,尤其涉及一种打钻过程中煤基复合封孔材料实时制备与封孔装置及方法,包括煤屑产生系统,与煤屑产生系统出口相连的煤屑分离系统,与煤屑分离系统相连的煤基复合材料制备系统,以及与煤基复合材料制备系统相连的煤基复合材料封孔系统,通过各项分系统的分工合作,煤屑产生系统制造煤屑颗粒、煤屑分离系统筛分理想化粒径的煤屑颗粒、煤基复合材料制备系统开发封孔材料浆液和煤基复合材料封孔系统实时封堵钻孔,为打钻过程产生的煤屑颗粒二次利用提供途径参考,煤矿封孔材料的开发提供合理的思路,封孔系统与技术提供新的使用技术方法,从而提高煤层瓦斯的抽放效率。

    一种水力压裂上覆关键层卸压增透方法

    公开(公告)号:CN114776272A

    公开(公告)日:2022-07-22

    申请号:CN202210579677.X

    申请日:2022-05-25

    Abstract: 本发明属于瓦斯治理与地质地层领域,涉及一种水力压裂上覆关键层卸压增透方法,包括以下步骤:根据关键层理论确定上覆岩层中主关键层、亚关键层的位置,确定关键层的岩性性质;根据岩性性质确定水力压裂关键层压力控制以及压裂范围,通过单轴抗拉、抗压实验测定分析上覆关键层岩石力学参数,得到单轴抗压强度和单轴抗拉强度,采用H‑W模型对顶板砂岩破裂压力进行机算,确定水力压裂破坏关键层影响范围;确定水力压裂钻孔的布置方案,依据压裂范围,布置观测孔,确定压裂位置,进行压裂钻孔布置方案的确定,采用分段水力压裂技术,对上覆关键层进行充分压裂破坏,有效切断关键层与巷道两侧煤层顶板的应力传递路径达到卸压增透目的。

    一种脉冲式注浆封孔装置及封孔方法

    公开(公告)号:CN115559687B

    公开(公告)日:2023-05-16

    申请号:CN202211286951.0

    申请日:2022-10-20

    Abstract: 本发明属于煤层瓦斯抽采利用技术领域,尤其涉及一种脉冲式注浆封孔装置及封孔方法,包括浆液搅拌桶,与浆液搅拌桶相连的脉冲发生器,以及与脉冲发生器相连的单向式封孔器,该装置利用注浆泵将浆液搅拌桶中的注浆液抽送至脉冲发生器,注浆液以脉冲形式注入单向式封孔器,在注浆液脉冲压力的作用下打开单向阀的启动片,在重力作用下注浆液的回流压力压迫单向阀的截止瓣膜,保证注浆液持续注入单向式封孔器,为膨胀囊袋和封孔区域提供充足的注浆液,从而避免煤层钻孔因注浆材料颗粒沉降形成“月牙形”漏气通道。本发明为煤层瓦斯抽采钻孔封孔领域提供参考和新的技术方法,有利于提高钻孔的瓦斯抽采浓度。

    一种水力压裂上覆关键层卸压增透方法

    公开(公告)号:CN114776272B

    公开(公告)日:2022-11-22

    申请号:CN202210579677.X

    申请日:2022-05-25

    Abstract: 本发明属于瓦斯治理与地质地层领域,涉及一种水力压裂上覆关键层卸压增透方法,包括以下步骤:根据关键层理论确定上覆岩层中主关键层、亚关键层的位置,确定关键层的岩性性质;根据岩性性质确定水力压裂关键层压力控制以及压裂范围,通过单轴抗拉、抗压实验测定分析上覆关键层岩石力学参数,得到单轴抗压强度和单轴抗拉强度,采用H‑W模型对顶板砂岩破裂压力进行机算,确定水力压裂破坏关键层影响范围;确定水力压裂钻孔的布置方案,依据压裂范围,布置观测孔,确定压裂位置,进行压裂钻孔布置方案的确定,采用分段水力压裂技术,对上覆关键层进行充分压裂破坏,有效切断关键层与巷道两侧煤层顶板的应力传递路径达到卸压增透目的。

    一种脉冲水力裂切煤层卸压增透装置及卸压增透方法

    公开(公告)号:CN114165197A

    公开(公告)日:2022-03-11

    申请号:CN202111499598.X

    申请日:2021-12-09

    Abstract: 本发明属于煤矿煤层卸压增透及瓦斯抽采技术领域,具体公开一种脉冲水力裂切煤层卸压增透装置及卸压增透方法,该装置主要由水箱、高压水泵、压力表、高压储水罐、气动阀、电磁阀组、控制柜等组成,该装置将高压水泵形成的高压水注入高压储水罐中,通过控制柜控制电磁阀、气动阀、引射泵的开闭形成高压脉冲流体,高压脉冲流体经输送杆到达胀裂器中,在高压脉冲流体作用下胀裂器产生周期性膨胀,从而对煤壁产生压缩‑膨胀‑压缩的周期性张压应力,使煤层中裂隙不断发育形成致密贯通的裂隙网络,从而达到煤层卸压、强化瓦斯抽采的目的。

Patent Agency Ranking