-
公开(公告)号:CN112364994A
公开(公告)日:2021-02-12
申请号:CN202010777752.4
申请日:2020-08-05
Applicant: 华侨大学
Abstract: 本发明提出一种MMD和TSP的频域载荷识别的模型迁移学习源域选择方法,首先利用MMD距离度量不同频率下样本数据间的差异,得到不同频率间MMD距离矩阵D;其次,通过遗传算法求解访问所有频率所需MMD距离总和的最小代价,求解MMD距离矩阵的TSP问题;最后,利用遗传算法得到迁移顺序频率序列进行频域载荷识别神经网络模型的迁移学习。本发明提出一种MMD和TSP的频域载荷识别的模型迁移学习源域选择方法,通过进行迁移顺序的选择,可以得到更好的神经网络模型,有效提高模型精度,减少训练时间、得到更高的识别精度。